|
 |
"Электрик Инфо" - онлайн журнал про электричество. Теория и практика. Обучающие статьи, примеры, технические решения, схемы, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
|
|
Схемы подключения
|
Принципиальные схемы
|
Электроснабжение Розетки и выключатели
| Автоматы защиты |
Кабель и провод
|
Монтаж электропроводки
Ремонт электротехники |
Молодому электрику
Почему шумят провода ЛЭП
Почему гудят провода ЛЭП? Вы когда-нибудь задумывались об этом? А ведь ответ на этот вопрос может быть отнюдь не тривиальным, хотя и вполне бесхитростным. Давайте рассмотрим несколько вариантов объяснения, каждый из которых имеет право на существование.
Чаще всего приводят такую идею. Переменное электрическое поле вблизи провода ЛЭП электризует воздух вокруг провода, разгоняет свободные электроны, которые ионизируют молекулы воздуха, а они в свою очередь порождают коронный разряд. И вот, 100 раз в секунду загорается и гаснет коронный разряд вокруг провода, при этом воздух возле провода нагревается — остывает, расширяется - сжимается, и таким вот образом получается звуковая волна в воздухе, которая воспринимается нашим ухом как гудение провода. Еще есть вот такая идея. Шум происходит от того, что переменный ток с частотой 50 Гц рождает переменное магнитное поле ...
Продолжить чтение >>>
|
10 самых популярных электронных компонентов
В мире современной электроники электронные компоненты (радиодетали) - это краеугольные камни, на которых строится вся наша цифровая реальность. Они скрыты от нашего взора, но их влияние ощущается повсюду: от маленьких гаджетов, которые мы несем в кармане, до сложных научных приборов и систем автоматизации промышленных предприятий.
Под термином "радиодетали" скрываются множество элементов, каждый из которых имеет свою собственную уникальную функцию и способность взаимодействовать с другими компонентами. Эти компоненты - настоящие "кирпичики" микромира, позволяющие нам строить сложные электронные конструкции и устройства. Термин "радиодетали" в свое время возник из-за столкновения мира электроники с начавшим развиваться в начале XX века радио. Первым широко распространенным и в то же время сложным для непрофессионалов электронным устройством было радио ...
Продолжить чтение >>>
|
Магнитогидродинамический метод непосредственного преобразования тепловой энергии в электрическую
Принципы осуществления многих методов непосредственного получения электроэнергии известны уже давно, однако возможность практического решения этой проблемы особенно возросла в последние годы в связи с громадными достижениями современной науки и техники. Важнейшее преимущество некоторых новых методов получения электроэнергии состоит в том, что могут быть получены очень высокие к. п. д., достигающие 50—60%.
Основными методами превращения тепловой или химической энергии в электрическую без применения промежуточных агрегатов с вращающимися частями являются: магнито-гидродинамический (МГД), термоэлектрический, термоионный (термоэлектронный), использование топливных элементов. В качестве источников тепла могут служить обычные виды топлива, а также ядерное и термоядерное горючее. При использовании МГД метода возможно сочетание непосредственной генерации электроэнергии в МГД генераторе с выработкой ее в обычных генераторах, работающих с паровой или газовой турбиной ...
Продолжить чтение >>>
|
Люминесцентные лампы - от расцвета до заката
Люминесцентному освещению в том виде, в каком мы имеем его сегодня, около 80 лет, хотя история становления технологии длилась приблизительно столько же, то есть в целом на путь технологии люминесцентных ламп приходится около 160 лет.
До того как в каждом доме появилась люминесцентная лампа, до появления люминесцентных ламп в уличном освещении, до появления ламп дневного света в офисах, инженерами и учеными был пройден длинный путь от изобретения вакуумной трубки, через эксперименты со свечением инертных газов под высоким напряжением, до разработки цельной технологии с надежным и качественным флуоресцентным покрытием светящихся трубок и подходящей схемой питания люминесцентных ламп. Первая газоразрядная лампа (в виде экспериментальной установки) увидит свет в 1856 году, и это будет трубка Гейслера. Немецкий стеклодув Генрих Гейслер отличался изобретательским талантом, и благодаря вакуумному насосу ...
Продолжить чтение >>>
|
Редкоземельные металлы — история открытия, значение для современного мира, удивительные факты
Семнадцать химических элементов таблицы Менделеева — скандий, иттрий и лантаноиды — сегодня присутствуют практически в каждом электронном предмете (и во многих других) нашей повседневной жизни.
Они обозначаются аббревиатурой РЗЭ (редкоземельные элементы) или РЗМ (редкоземельные металлы) и также подразделяются на легкие (LREE, от лантана до прометия), средние (MREE, от самария до гольмия) и тяжелые (HREE, от эрбия до лютеция). Редкоземельные металлы еще называют лантоноидами потому, что все они похожи на элемент с номером 57 — лантан, да и между собой они как две капли воды, вернее, как пятнадцать капель. Их удивительное химическое сходство доставило много хлопот. Однажды, это было в 1787 году, раскапывая старые отвалы заброшенного карьера маленького местечка Иттерби, близ Стокгольма, известный шведский химик и минералог К. Аррениус обнаружил черный тяжелый камень ...
Продолжить чтение >>>
|
Возобновляемая энергетика: десять самых амбициозных стран
В современном мире все больше стран обращают свой взгляд на возобновляемую энергетику. Переход к экологически чистым источникам энергии становится неотъемлемой частью энергетической политики и стратегии развития многих государств. В данной статье представлен топ-10 стран, которые являются лидерами в привлечении инвестиций в области возобновляемых источников энергии, основываясь на Индексе привлекательности возобновляемых источников энергии.
Основное внимание сегодня сосредоточено на электроэнергетическом секторе, где доля возобновляемых источников составляет 26% от общего объема производства электроэнергии. Стоимость новых солнечных и ветровых энергетических проектов снижается и становится конкурентоспособной по сравнению с традиционными источниками энергии, такими как угольные электростанции ...
Продолжить чтение >>>
|
Замкнутая кольцевая проводка и ее использование
Переживающая последствия Второй мировой войны, Британия вступила в программу массовой перестройки жилья, ибо в результате войны многие дома были попросту разрушены. Острая нехватка меди вынуждала экономить материал, и инженерам необходимо было придумать такую схему проводки, которая позволила бы использовать имеющуюся в распоряжении медь наиболее оптимальным экономичным образом. При том необходимо было получить проводку для нормальной работы с 13-амперными розетками, оснащенными предохранителями.
Розетки и вилки с предохранителем стандарта BS1363 с прямоугольными контактами были тогда популярным унифицированным решением, под них и разрабатывалась схема проводки в период с 1942 по 1947 годы. Так и была разработана кольцевая проводка, допускающая подключение пары электрических обогревателей мощностью по 3 кВт каждый, в любом из двух мест в доме, и позволяющая ...
Продолжить чтение >>>
|
Демонстрация эффекта Мейснера: сверхпроводники и левитация
Эффект Мейснера, также называемый эффектом Мейснера-Оксенфельда, заключается в полном исчезновении потока магнитного поля внутри сверхпроводящего материала ниже его критической температуры. Он был открыт Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.
Мейснер и Оксенфельд обнаружили, что магнитное поле полностью нейтрализуется внутри сверхпроводящего материала и что силовые линии магнитного поля вытесняются изнутри материала, поэтому он ведет себя как идеальный диамагнитный материал. Эффект Мейснера - одно из свойств, определяющих сверхпроводимость. Этот эффект используется для демонстрации явления магнитной левитации сверхпроводников над магнитами, а также определяет понятие сверхпроводимости: сверхпроводник - это материал, в котором ниже определенной температуры электрическое сопротивление исчезает и возникает эффект Мейснера ...
Продолжить чтение >>>
|
Как устроен и работает вольтов столб
Гальванический элемент Вольта, более известный как "вольтов столб", является устройством, способным генерировать электрическое напряжение за счет химических реакций. Он был изобретен и описан итальянским физиком Алессандро Вольта в 1800 году, и с тех пор стал одним из фундаментальных компонентов современной электротехники.
Проводя один из экспериментов, Вольта опустил в банку с кислотой две пластинки - цинковую и медную и соединил их проволокой. В результате цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Это позволило Вольте сделать предположение о том, что по проволоке протекает электрический ток. На основе этого открытия Алессандро Вольта был изобретен первый гальванический элемент, который получил название "элемент Вольта". Для удобства использования, Вольта придал элементу форму вертикального цилиндра, который состоял из соединенных между собой колец цинка, меди и сукна ...
Продолжить чтение >>>
|
|
|