Электротехнический интернет-журнал Electrik.info

Электрик Инфо - мир электричества. Электрика в квартире и доме, электроснабжение, электромонтаж, ремонт, освещение, домашняя автоматизация, практическая электроника. Статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для начинающих электриков и домашних мастеров.
Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок.

 
 

Сайт электрика

Новые статьи

Начинающим электрикам, Промышленная электрика

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Коммутация – это включение или выключение электроприбора в сеть. Для этого используют разъединители, выключатели, автоматические выключатели, реле, контакторы, пускатели. Последние три (реле, контактор и магнитный пускатель) подобны по своему строению, но предназначены для разных мощностей нагрузки. Это электромеханические коммутационные устройства. У новичков часто возникают вопросы типа:

  • «Для чего у реле столько контактов?»;

  • «Как заменить реле, если нет подобного по расположению выводов?»;

  • «Как подобрать реле?».

Я постараюсь ответить на все эти вопросы в статье.

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Для чего нужно реле?

Чтобы включить нагрузку нужно подать на её выводы напряжение, оно может быть постоянным и переменны, с разным количеством фаз и полюсов.

Напряжение можно подать несколькими способами:

  • Разъёмное соединение (вставить вилку в розетку или штекер в гнездо);

  • Разъединителем (как вы включаете свет в комнате, например);

  • Через реле, контактор, пускатель или полупроводниковый коммутационный прибор.

Первые два способа ограничены как по максимальной коммутационной мощности, так и по расположению точки подключения. Это удобно, если свет или прибор вы включаете выключателем или автоматом при этом и они расположены рядом друг с другом.

Для примера, приведу ситуацию, например водонагревательный бак (бойлер) – это достаточно мощная нагрузка (1 – 3 и более кВт). Ввод электроэнергии в коридоре, и там же на электрощите у вас расположен автомат включения бойлера, тогда вам нужно протянуть кабель сечением 2.5 кв. мм. На 3-5 метров. А если вам нужно включить такую нагрузку на большом расстоянии?

Для удаленного управления можно использовать такой же разъединитель, но чем больше расстояние – тем большим получится сопротивление кабеля, значит, нужно будет использовать кабеля с большим сечением, а это дорого. Да и если кабель оборвется – непосредственно на месте включить прибор уже не получится.

Для этого можно использовать реле, которое установлено непосредственно возле нагрузки, а включать его удаленно. Для этого не нужен толстый кабель, ведь сигнал управления обычно от единиц до десятков ватт, при этом может включаться нагрузка в несколько киловатт.

Выключатели и разъединители – нужны для ручного включения нагрузки, для того, чтобы управлять ею автоматически, нужно использовать реле или полупроводниковые приборы.

Сферы применения реле:

  • Схемы защиты электроустановок. Для автоматического ввода энергии защиты от низких и высоких напряжений, Реле тока – для срабатывания токовых защит, разрешения пуска электрических машин и пр.;

  • Автоматика;

  • КИПиА;

  • Системы охраны;

  • Для удаленного включения.

Электромагнитное реле

Как работает реле?

Электромагнитное реле состоит из катушки, якоря и набора контактов. Набор контактов может быть разным, например:

  • Реле с одной парой контактов;

  • С двумя парами контактов (нормально-замкнутые – NC, и нормально-разомкнутые – NO);

  • С несколькими группами (для управления нагрузкой в независимых друг от друга цепях).

Катушка может быть рассчитана на разную величину постоянного и переменного тока, вы можете подобрать под свою схему, чтобы не использовать дополнительный источник для управления катушки. Контакты могут коммутировать как постоянный, так и переменный ток, величина тока и напряжения обычно указана на крышке реле.

Мощность нагрузки зависит от коммутационной способности аппарата обусловленного его конструкцией, на мощных электромагнитных коммутационных устройствах присутствует дугогасительная камера, для управления мощной резистивной и индуктивной нагрузкой, например электродвигателем.

Устройство реле

Работа реле основана на работе магнитного поля. Когда на катушку подаётся ток, то силовые линии магнитного поля пронизывают её сердечник. Якорь изготовлен из материала, который магнитится и он притягивается к сердечнику катушки. На якоре может быть размещена контактная медная пластика и гибкая подводка (провод), тогда якорь находится под напряжением и по медным шинам подаётся напряжение на неподвижный контакт.

Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты. Когда напряжение пропадает – якорь возвращается в нормальное состояние возвратной пружиной.

Устройство реле

Могут быть и другие конструкции, например, когда якорь толкает подвижный контакт, и он переключается от нормального состояния к активному, это изображено на картинке ниже.

Реле

Итог: Реле позволяет малым током через катушку управлять большим током через контакты. Величина управляющего и коммутируемого (через контакты) напряжения может быть разная и не зависит друг от друга. Таким образом мы получаем гальванически развязанное управление нагрузкой. Это даёт существенное преимущество перед полупроводниками. Дело в том, что сам по себе транзистор или тиристор он не развязан гальванически, даже более того непосредственно связан.

Токи базы это часть тока коммутируемой через эмиттер-коллектор цепи, в тиристоре, в принципе, ситуация подобна. Если PN-переход повреждается – напряжение включаемой цепи может попасть на цепь управления, если это кнопка – ничего страшного, а если это микросхема или микроконтроллер – они, скорее всего, тоже выйдут из строя, поэтому реализуется дополнительная гальваническая развязка через оптопару или трансформатор. А чем больше деталей – тем меньше надежность.

Преимущества реле:

  • простота конструкции;

  • ремонтопригодность. вы можете провести ревизию большинства реле, например, подчистить контакты от нагара и оно заново заработает, а при определенной сноровке можно заменить катушку или подпаять её выводы если они оторвались от выходящих контактов;

  • полная гальваническая развязка силовой цепи и цепи управления;

  • низкое переходное сопротивление контактов.

Чем ниже сопротивление контактов, тем меньше теряется напряжения на них и меньше нагрев. Электронные реле выделяют тепло, чуть ниже я бегло расскажу о них.

Недостатки реле:

  • из-за того, что конструкция по сути механическая – ограниченное число срабатываний. Хотя для современных реле оно доходит до миллионов срабатываний. Так что сомнительный момент недостаток.

  • скорость срабатывания. Электромагнитное реле срабатывает за доли секунды, в то время как полупроводниковые ключи могут переключаться миллионы раз в секунду. Поэтому нужно подходить с умом к выбору коммутационной аппаратуры.

  • при отклонениях от управляющего напряжения может быть дребезжание реле, т.е. состояние, когда ток через катушку мал, для нормального удержания якоря, и оно «жужжит» открываясь и закрываясь с большой скоростью. Это чревато скорым выходом его из строя. Отсюда вытекает следующее правило – для управления реле аналоговый сигнал должен подаваться через пороговые устройства, типа триггера Шмидта, компаратора, микроконтроллера и т.д.;

  • Щелкает при срабатывании.

Контакты

Характеристики реле

Чтобы правильно подобрать реле нужно учесть ряд параметров, который описывает его особенности:

1. Напряжение срабатывания катушки. 12 В реле не будет устойчиво работать или не включится совсем если вы на его катушку подадите 5 В.

2. Ток через катушку.

3. Количество контактных групп. Реле может быть 1-канальным, т.е. содержать 1 коммутационную пару. А может и 3-канальным, что позволит подключать 4 полюса к нагрузке (например, три фазы 380В)

4. Максимальный ток через контакты;

5. Максимальное коммутируемое напряжение. У одного и того же реле оно различное для постоянного и переменного токов, например 220 В переменного и 30 В постоянного. Это связано с особенностями дугообразования при коммутации разных электроцепей.

6. Способ монтажа – клеммные колодки, вывод для клемм, пайка в плату или установка на DIN-рейку.

Установка на DIN-рейку

Электронные реле

Обычное электромагнитное реле при срабатывании щелкает, что может мешать вам при использовании таких приборов в бытовых помещениях. Электронное реле, или как его еще называют твердотельное реле, лишено этого недостатка, но оно выделяет тепло, т.к. в качестве ключа используется транзистор (для реле постоянного тока) или симистор (для реле переменного тока). Кроме полупроводникового ключа в электронном реле установлена обвязка для обеспечения возможности управления ключом нужным управляющим напряжением.

Схема электронного реле
Электронное реле

Такое реле для управления использует постоянное напряжение от 3 до 32, а коммутирует переменное от 24 до 380 В с током до 10 А.

Преимущества:

  • малое потребление управляющего тока;

  • отсутствия шума при переключении;

  • больший ресурс (миллиард и больше срабатываний, а это в тысячу раз больше чем у электромагнитного).

Недостатки:

  • греется;

  • может сгореть от перегрева;

  • дороже стоит;

  • если сгорит – отремонтировать не получится.

Как подключить реле?

На картинке ниже хорошо изображена схема подключения реле к сети и нагрузке. На один из силовых контактов подключают фазу, на второй нагрузку, а ноль на второй вывод нагрузки.

Как подключить реле

Так собирается силовая часть. Цепь управления собирается так: источник питания, например аккумулятор или блок питания, если реле управляемое постоянным током, через кнопку подключается к катушке. Для управления реле переменного тока схема аналогична, на катушку подается переменное напряжение нужной величины.

Здесь очевидно, что напряжение управления никак не зависит от напряжения в нагрузке, тоже и с токами. Ниже вы видите схему управления активаторами центрального замка автомобиля с двухполярым управлением.

Задача следующая, чтобы активатор совершил движение вперед нужно подключить плюс и минус к его соленоиду, чтобы сдвинуть его назад – полярность нужно сменить. Это сделано с помощью двух реле с 5-ю контактами (нормально-замкнутый и нормально-разомкнутый).

Пример подключения

Когда напряжение подаётся на левое реле, плюс подается на нижний провод (по схеме) активатора, через нормально-замкнутые контакты правого реле верхний провод активатора подключен к отрицательному выводу (к массе).

Когда напряжение подано на катушку правого реле, а левое обесточено, полярность получается обратной: плюс через нормально-разомкнутый контакт правого реле подаётся на верхний провод. А через нормально-замкнутые контактны правого реле – нижний провод активатора соединен с массой.

Этот частный случай я привел для примера того, что с помощью реле можно не только включать напряжение на нагрузку, но и осуществлять разнообразные схемы подключения и переполюсовки.

Как подключить реле к микроконтроллеру

Чтобы управлять нагрузкой переменного тока через микроконтроллер удобно использовать реле. Но возникает небольшая проблема: ток потребления реле зачастую превышает максимальный ток через пин микроконтроллера. Чтобы её решить – нужно усилить ток.

Схема подключения реле к микроконтроллеру

На схеме изображено подключение реле с катушкой на 12В. Здесь транзистор VT4 обратной проводимости, он играет роль усилителя тока, резистор R нужен для ограничения тока через базу (устанавливается так, чтобы ток был не более чем максимальный ток через пин микроконтроллера).

Резистор в цепи коллектора нужен для того, чтобы задать ток катушки, подбирается по величине тока срабатывания реле, в принципе, его можно исключить. Параллельно катушке установлен обратный диод VD2 – он нужен, чтобы всплески самоиндукции не убили транзистор и выход микроконтроллера. С диодом всплески отправятся в сторону источника питания, и энергия магнитного поля прекратит свою работу.

Ардуино и реле

Для любителей Arduino есть готовые релейные шилды и отдельные модули. Чтобы обезопасить выходы микроконтроллера в зависимости от конкретного модуля может быть реализована опторазвязка управляющего сигнала, что значительно увеличит надёжность схемы.

Реле для Ардуино

Схема подобного модуля вот:

Схема модуля

Мы говорили о характеристиках реле, так вот они часто указаны в маркировке на передней крышке. Обратите внимание на фото релейного модуля:

  • 10A 250VAC – значит что способно управлять нагрузкой переменного напряжения до 250В и с током до 10 А;

  • 10A 30VDC – для постоянного тока напряжение в нагрузке не должно превышать 30В.

  • SRD-05VDC-SL-C – маркировка, зависит от каждого произовдителя. В ней мы видим 05VDC – это значит, что реле сработает от напряжения в 5В на катушке.

При этом у реле есть нормально открытый контакты, всего 1 подвижный контакт. Схема подключения к ардуине изображена ниже.

Схема подключения нагрузки к Ардуино

Заключение

Реле это классический коммутационный прибор который используется везде: пультах управления в щитовых промышленных цехов, в автоматике, для защиты оборудования и человека, для избирательного подключения конкретной цепи, в лифтовом оборудовании.

Начинающему электрику, электронщику или радиолюбителю очень важно научиться использовать реле и составлять схемы с ними, так вы можете применять их в работе и хозяйстве, реализуя релейные алгоритмы без применения микроконтроллеров. Это хоть и увеличит габариты, но значительно улучшит надежность схемы. Ведь надежность это не только долговечность, но и безотказность и ремонтопригодность!

Алексей Бартош


Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

ВКонтакте Facebook Одноклассники

Смотрите также на Электрик Инфо:

  • Как с помощью Ардуино безопасно управлять нагрузкой на напряжении 220 вольт
  • Промежуточные реле: назначение, где применяются и как их выбирают
  • Как можно легко управлять мощной нагрузкой переменного тока
  • Эксплуатация и ремонт электромагнитных реле
  • Реле давления РМ-5

  •  
    Добавление комментария
    Имя:*
    Комментарий:
    Введите код: *


    Электрика дома  | Электрообзоры  | Энергосбережение
    Секреты электрика | Источники света | Делимся опытом
    Домашняя автоматика | Электрика для начинающих
    Практическая электроника | Электротехнические новинки

    Copyright © 2009-2019 electrik.info Андрей Повный (об авторе)
    Вся информация на сайте предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.