Электротехнический интернет-журнал Electrik.info

 
 
 

Сайт электрика

Избранные статьи » Электромастерская

Силовые MOSFET и IGBT транзисторы, особенности их применения

Технологии в области силовой электроники все время совершенствуются: реле становятся твердотельными, биполярные транзисторы и тиристоры заменяются все обширнее на полевые транзисторы, новые материалы разрабатываются и применяются в конденсаторах и т. д. — всюду определенно заметна активная технологическая эволюция, которая не прекращается ни на год. С чем же это связано?

Это связано, очевидно, с тем, что в какой-то момент производители оказываются не в состоянии удовлетворить запросы потребителей на возможности и качество силового электронного оборудования: у реле искрят и обгорают контакты, биполярные транзисторы для управления требуют слишком много мощности, силовые блоки занимают неприемлемо много места и т. п. Производители конкурируют между собой — кто первым предложит лучшую альтернативу…?

Так и появились полевые MOSFET транзисторы, благодаря которым управление потоком носителей заряда стало возможным не посредством изменения тока базы, как у биполярных предков, а посредством электрического поля затвора, по сути — просто приложенным к затвору напряжением.

Полевой MOSFET транзистор

В итоге уже к началу 2000-х доля силовых устройств на MOSFET и IGBT составляла около 30%, в то время как биполярных транзисторов в силовой электронике осталось менее 20%. За последние лет 15 произошел еще более существенный рывок, и биполярные транзисторы в классическом понимании почти полностью уступили место MOSFET и IGBT в сегменте управляемых силовых полупроводниковых ключей.

MOSFET и IGBT транзисторы

Проектируя, к примеру, силовой высокочастотный преобразователь, разработчик уже выбирает между MOSFET и IGBT – оба из которых управляются напряжением, прикладываемым к затвору, а вовсе не током, как биполярные транзисторы, и цепи управления получаются в результате более простыми. Давайте, однако рассмотрим особенности этих самых транзисторов, управляемых напряжением затвора.

 

MOSFET или IGBT

У IGBT (БТИЗ-биполярный транзистор с изолированным затвором) в открытом состоянии рабочий ток проходит через p-n-переход, а у MOSFET – через канал сток-исток, обладающий резистивным характером. Вот и возможности для рассеяния мощности у этих приборов различаются, потери получаются разными: у MOSFET-полевика рассеиваемая мощность будет пропорциональна квадрату тока через канал и сопротивлению канала, в то время как у БТИЗ рассеиваемая мощность окажется пропорциональна напряжению насыщения коллектор-эмиттер и току через канал в первой степени.

MOSFET или IGBT

Если нам нужно снизить потери на ключе, то потребуется выбрать MOSFET с меньшим сопротивлением канала, однако не стоит забывать, что с ростом температуры полупроводника это сопротивление вырастет и потери на нагрев все же возрастут. А вот у IGBT с ростом температуры напряжение насыщения p-n-перехода наоборот снижается, значит и потери на нагрев уменьшаются. Но не все так элементарно, как может показаться на взгляд неискушенного в силовой электронике человека. Механизмы определения потерь у IGBT и MOSFET в корне различаются.

Как вы поняли, у MOSFET-транзистора сопротивление канала в проводящем состоянии обуславливает определенные потери мощности на нем, которые по статистике почти в 4 раза превосходят мощность, затрачиваемую на управление затвором.

У IGBT дело обстоит с точностью до наоборот: потери на переходе меньше, а вот затраты энергии на управление — больше. Речь о частотах порядка 60 кГц, и чем выше частота — тем больше потери на управление затвором, особенно применительно к IGBT.

Транзистор IGBT

Дело все в том, что в MOSFET неосновные носители заряда не рекомбинируют, как это происходит в IGBT, в составе которого есть полевой MOSFET-транзистор, определяющий скорость открывания, но где база недоступна напрямую, и ускорить процесс при помощи внешних схем нельзя. В итоге динамические характеристики у IGBT ограничены, ограничена и предельная рабочая частота.

Повышая коэффициент передачи и снижая напряжение насыщения — допустим, понизим статические потери, но зато повысим потери при переключении. По этой причине производители IGBT-транзисторов указывают в документации на свои приборы оптимальную частоту и максимальную скорость переключения.

Есть недостаток и у MOSFET. Его внутренний диод отличается конечным временем обратного восстановления, которое так или иначе превышает время восстановления, характерное для внутренних антипараллельных диодов IGBT. В итоге имеем потери включения и токовые перегрузки у MOSFET в полумостовых схемах.

Теперь непосредственно про рассеиваемое тепло. Площадь полупроводниковой IGBT-структуры больше чем у MOSFET, поэтому и рассеиваемая мощность у IGBT больше, вместе с тем температура перехода в процессе работы ключа растет интенсивнее, поэтому важно правильно подобрать радиатор к ключу, грамотно рассчитав поток тепла, приняв в расчет тепловые сопротивления всех границ сборки.

У MOSFET на высоких мощностях также растут потери на нагрев, сильно превосходя потери на управление затвором IGBT. При мощностях выше 300-500Вт и на частотах в районе 20-30 кГц преимущество будет за IGBT-транзисторами.

Биполярный транзистор с изолированным затвором

Вообще, для каждой задачи выбирают свой тип ключа, и есть определенные типовые воззрения на этот аспект. MOSFETы подойдут для работы на частотах выше 20 кГц при напряжениях питания до 300 В — зарядные устройства, импульсные блоки питания, компактные инверторы небольшой мощности и т. д. - подавляющее большинство из них собирают сегодня на MOSFET.

IGBT хорошо работают на частотах до 20 кГц при напряжениях питания 1000 и более вольт — частотные преобразователи, ИБП и т. п. - вот низкочастотный сегмент силовой техники для IGBT-транзисторов.

В промежуточной нише — от 300 до 1000 вольт, на частотах порядка 10 кГц, - подбор полупроводникового ключа подходящей технологии осуществляют сугубо индивидуально, взвешивая все за и против, включая цену, габариты, КПД и другие факторы.

Между тем нельзя однозначно сказать, что в одной типовой ситуации подойдет именно IGBT, а в другой — только MOSFET. Необходимо комплексно подходить к разработке каждого конкретного устройства. Исходя из мощности прибора, режима его работы, предполагаемого теплового режима, приемлемых габаритов, особенностей управления схемой и т.д.

И главное — выбрав ключи нужного типа, разработчику важно точно определить их параметры, ибо в технической документации (в даташите) отнюдь не всегда все точно соответствует реальности. Чем более точно будут известны параметры — тем эффективнее и надежнее получится изделие, независимо от того, идет ли речь об IGBT или о MOSFET.

Смотрите также: Биполярные и полевые транзисторы - в чем различие



Другие статьи:


Мы ВКонтакте:

Мы в Facebook:

В Одноклассниках:

Смотрите также на Электрик Инфо:

  • Биполярные и полевые транзисторы - в чем различие
  • Виды транзисторов и их применение
  • Драйверы для транзисторов MOSFET на таймере 555
  • Как подобрать аналог транзистора
  • Как рассчитать радиатор для транзистора
  •  

    Электрика дома  | Электрообзоры  | Энергосбережение
    Секреты электрика | Источники света | Делимся опытом
    Домашняя автоматика | Электрика для начинающих
    Электромастерская | Электротехнические новинки

    Электрик Инфо - электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.
    Информация и обучающие материалы для начинающих электриков.
    Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.
    Copyright © 2008-2017 electrik.info
    Е-mail: electroby@mail.ru Сайт в Google+ Карта сайта
    Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.

    Полезное

    Силовые разъемы IEK