Электротехнический интернет-журнал Electrik.info

 
 

Сайт электрика

Электрик Инфо » Интересные электротехнические новинки

Что такое топливные элементы?

Что такое топливные элементы?Мобильная электроника с каждым годом, если не месяцем, становится все доступнее и распространеннее. Тут вам и ноутбуки, и КПК, и цифровые фотоаппараты, и мобильники, и еще масса всяких полезных и не очень устройств. И все эти устройства непрерывно обзаводятся новыми функциями, более мощными процессорами, большими цветными экранами, беспроводной связью, в то же время уменьшаясь в размерах. Но, в отличие от полупроводниковых технологий, технологии питания всего этого мобильного зверинца идут совсем не семимильными шагами.

Обычных аккумуляторов и батарей становится явно недостаточно для питания последних достижений электронной индустрии в течение сколько-нибудь существенного времени. А без надежных и емких батарей теряется весь смысл мобильности и беспроводности. Так что компьютерная индустрия все активнее и активнее трудится над проблемой альтернативных источников питания. И наиболее перспективным, на сегодняшний день, направлением здесь являются топливные элементы.

Основной принцип работы топливных элементов был открыт британским ученым сэром Уильямом Гроувом в 1839-м году. Он известен как отец «топливной ячейки». Уильям Гроув генерировал электричество путем изменения электролиза воды для извлечения водорода и кислорода. Отключив от электролитической ячейки батарею, Грове с удивлением обнаружил, что электроды начали поглощать выделившийся газ и вырабатывать ток. Открытие процесса электрохимического "холодного" горения водорода стало знаменательным событие в энергетике, и в дальнейшем такие известные электрохимики, как Оствальд и Нернст, сыграли большую роль в развитии теоретических основ и практической реализации топливных элементов и предсказали им большое будущее.

Сам термин "топливный элемент" (Fuel Cell) появился позднее - он был предложен в 1889 году Людвигом Мондом и Чарльзом Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива неэффективно переходит в тепловую энергию. Но оказалось возможным реакцию окисления, например водорода с кислородом, провести в среде электролита и при наличии электродов получить электрический ток. Например, подавая водород к электроду, находящемуся в щелочной среде, получим электроны:

2H2 + 4OH- → 4H2O + 4e-

которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция: 4e- + O2 + 2H2O → 4OH-

Видно, что результирующая реакция 2H2 + O2 → H2O - такая же, что и при обычном горении, но в топливном элементе, или иначе - в электрохимическом генераторе, получается электрический ток с большой эффективностью и частично тепло. Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей - воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

Развитие топливных элементов энергично продолжалось как за рубежом, так и в России, а далее и в СССР. Среди ученых, сделавших большой вклад в изучение топливных элементов, отметим В. Жако, П. Яблочкова, Ф. Бэкона, Э. Бауэра, Э. Юсти, К. Кордеша. В середине прошлого столетия начался новый штурм проблем топливных элемент. Частично это объясняется появлением новых идей, материалов и технологий в результате оборонных исследований.

Одним из ученых, сделавших крупный шаг в развитие топливных элементов, был П. М. Спиридонов. Водород-кислородные элементы Спиридонова давали плотность тока 30 мА/см2, что для того времени считалось большим достижением. В сороковые годы О. Давтян создал установку для электрохимического сжигания генераторного газа, получаемого газификацией углей. С каждого кубометра объема элемента Давтян получил 5 кВт мощности.

Это был первый топливный элемент на твердом электролите. Он имел высокий КПД, но со временем электролит приходил в негодность, и его нужно было менять. Впоследствии Давтян в конце пятидесятых годов создал мощную установку, приводящую в движение трактор. В те же годы английский инженер Т. Бэкон сконструировал и построил батарею топливных элементов общей мощностью 6 кВт и КПД 80 %, работающую на чистом водороде и кислороде, но отношение мощности к весу батареи оказалось слишком малым - такие элементы были непригодны для практического применения и слишком дорогими.

В последующие годы время одиночек прошло. Топливными элементами заинтересовались создатели космических аппаратов. С середины 60-ых миллионы долларов вкладывались в исследования топливных элементов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытан в США на космическом корабле "Джемини-5", а в дальнейшем - на кораблях "Аполлон" для полетов на Луну и по программе "Шатл".

В СССР топливные элементы разрабатывали в НПО "Квант", тоже для использования в космосе. В те годы уже появились новые материалы - твердополимерные электролиты на основе ионообменных мембран, новые типы катализаторов, электродов. И все-таки рабочая плотность тока была небольшой - в пределах 100-200 мА/см2, а содержание платины на электродах - несколько г/см2. Существовало много проблем, связанных с долговечностью, стабильностью, безопасностью.

Следующий этап бурного развития топливных элементов начался в 90-е гг. прошлого столетия и продолжается и сейчас. Он вызван потребностью в новых эффективных источниках энергии в связи, с одной стороны, с глобальной экологической проблемой усиливающегося выброса парниковых газов при сгорании органического топлива и, с другой стороны, с исчерпанием запасов такого топлива. Так как в топливном элементе конечным продуктом сгорания водорода является вода, то они считаются наиболее чистыми с точки зрения влияния на окружающую среду. Основная проблема заключается только в нахождении эффективного и недорогого способа получения водорода.

Миллиардные финансовые вложения на развитие топливных элементов и генераторов водорода должны привести к технологическому прорыву и сделают реальностью их использование в повседневной жизни: в элементах для сотовых телефонов, в автомобилях, на электростанциях. Уже в настоящее время такие автомобильные гиганты, как "Баллард", "Хонда", "Даймлер Крайслер", "Дженерал Моторс" демонстрируют легковые автомобили и автобусы, работающие на топливных элементах мощностью 50кВт. Рядом компаний разработаны демонстрационные электростанции на топливных элементах с твердооксидным электролитом мощностью до 500 кВт. Но, несмотря на значительный прорыв в улучшении характеристик топливных элементов, нужно решить еще много проблем, связанных с их стоимостью, надежностью, безопасностью.

В топливном элементе в отличии от батареек и аккумуляторов - и горючее, и окислитель подаются в него извне. Топливный элемент является только посредником в реакции и в идеальных условиях мог бы работать практически вечно. Красота этой технологии в том, что фактически в элементе происходит сжигание топлива и непосредственное превращение выделяющейся энергии в электричество. При прямом сжигании топлива оно окисляется кислородом, а выделяющееся при этом тепло идет на совершение полезной работы.

В топливном элементе, как и в батарейках, реакции окисления топлива и восстановления кислорода пространственно разделены, и процесс "сжигания" протекает, только если элемент отдает ток в нагрузку. Это все равно что дизельный электрогенератор, только без дизеля и генератора. А также без дыма, шума, перегрева и с намного более высоким КПД. Последнее объясняется тем, что, во-первых, нет промежуточных механических устройств и, во-вторых, топливный элемент не является тепловой машиной и вследствие этого не подчиняется закону Карно (то есть, его эффективность не определяется разницей температур).

В качестве окислителя в топливных элементах применяется кислород. Причем, поскольку кислорода вполне достаточно в воздухе, то волноваться о подаче окислителя не надо. Что касается топлива, то им является водород. Итак, в топливном элементе протекает реакция:

2H2 + O2 → 2H2O + электричество + тепло.

В итоге получается полезная энергия и водяной пар. Самым простым по своему устройству является топливный элемент с протонообменной мембраной (см. рисунок 1). Работает он следующим образом: попадающий в элемент водород разлагается под действием катализатора на электроны и положительно заряженные ионы водорода H+. Затем в действие вступает специальная мембрана, исполняющая здесь роль электролита в обычной батарейке. В силу своего химического состава она пропускает через себя протоны, но задерживает электроны. Таким образом, скопившиеся на аноде электроны создают избыточный отрицательный заряд, а ионы водорода создают положительный заряд на катоде (напряжение на элементе получается порядка 1В).

Для создания большой мощности, топливный элемент собирают из множества ячеек. Если включить элемент в нагрузку, то электроны потекут через нее к катоду, создавая ток и завершая процесс окисления водорода кислородом. В качестве катализатора в таких топливных элементах как правило применяются микрочастицы платины, нанесенные на углеродное волокно. Благодаря своей структуре такой катализатор хорошо пропускает газ и электричество. Мембрана как правило производится из серосодержащего полимера нафиона. Толщина мембраны равна десятым долям миллиметра. При реакции, конечно, выделяется и тепло, но его не так уж много, так что рабочая температура поддерживается в области 40-80°С.

Принцип действия топливного элемента

Рис.1. Принцип действия топливного элемента

Имеются и другие типы топливных элементов, в основном, отличающиеся типом применяемого электролита. Практически все они требуют в качестве топлива водород, так что возникает логичный вопрос: где его взять. Конечно, можно было бы употреблять сжатый водород из баллонов, но тут сразу же появляются проблемы связанные с транспортировкой и хранением этого весьма огнеопасного газа под большим давлением. Разумеется, можно использовать водород в связанном виде как в металлгидридных аккумуляторах. Но все же остается задача его добычи и транспортировки, ведь инфраструктуры водородных заправок не существует.

Впрочем, тут тоже есть решение - в качестве источника водорода можно применять жидкое углеводородное топливо. Например, этиловый или метиловый спирт. Правда, тут уже требуется специальное дополнительное устройство - топливный преобразователь, при высокой температуре (для метанола это будет где-то 240°С) преобразующее спирты в смесь газообразных H2 и CO2. Но в этом случае уже сложнее думать о портативности - такие устройства хорошо применять в качестве стационарных или автомобильных генераторов, а вот для компактной мобильной техники нужно что-нибудь менее громоздкое.

И тут мы приходим именно к тому устройству, разработкой которого со страшной силой занимаются практически все крупнейшие производители электроники - метаноловому топливному элементу (рисунок 2).

Принцип действия топливного элемента на метаноле

Рис.2. Принцип действия топливного элемента на метаноле

Принципиальная разница между водородным и метанольным толивными элементами заключается в применяемом катализаторе. Катализатор в метанольном топливном элементе позволяет отрывать протоны непосредственно от молекулы спирта. Таким образом, решается вопрос с топливом - метиловый спирт массово производится для химической промышленности, его легко хранить и транспортировать, а для зарядки метанолового топливного элемента достаточно просто заменить картридж с топливом. Правда, есть один значительный минус - метанол токсичен. К тому же эффективность метанольного топливного элемента значительно ниже, чем у водородного.

Метанольный топливный элемент

Рис. 3. Метанольный топливный элемент

Самый заманчивый вариант - использовать в качестве топлива этиловый спирт, благо производство и распространение алкогольных напитков любого состава и крепости хорошо налажено по всему земному шару. Однако эффективность этаноловых топливных элементов, к сожалению, еще ниже, чем у метаноловых.

Как уже отмечалось за много лет разработок в области топливных элементов, построены различные типы топливных элементов. Топливные элементы классифицируются по электролиту и виду топлива.

1. Твердополимерные водород-кислородные электролитные.

2. Твердополимерные метанольные топливные элементы.

3. Элементы на щелочном электролите.

4. Фосфорно-кислотные топливные элементы.

5. Топливные элементы на расплавленных карбонатах.

6. Твердооксидные топливные элементы.

В идеале КПД топливных элементов очень высок, но в реальных условиях имеются потери, связанные с неравновесными процессами, такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Усилия специалистов направлены на уменьшение указанных потерь.

Главным источником омических потерь, а также причиной высокой цены топливных элементов являются перфторированные сульфокатионитные ионообменные мембраны. Сейчас идут поиски альтернативных, более дешевых протонпроводящих полимеров. Поскольку проводимость этих мембран (твердых электролитов) достигает приемлемого значения (10 Ом/см) только при наличии воды, то газы, подаваемые в топливный элемент, надо дополнительно увлажнять в специальном устройстве, что тоже вызывает удорожание системы. В каталитических газодиффузионных электродах применяется, в основном, платина и некоторые другие благородные металлы, и до сих пор им замены не найдено. Хотя содержание платины в топливных элементах составляет несколько мг/см2, для больших батарей ее количество достигает десятков граммов.

При конструировании топливных элементов большое внимание уделяют системе теплоотвода, так как при высоких плотностях тока (до 1А/см2) происходит саморазогрев системы. Для охлаждения применяют циркулирующую в топливном элементе по специальным каналам воду, а при небольших мощностях - обдув воздухом.

Итак, современная система электрохимического генератора кроме самой батареи топливных элементов "обрастает" множеством вспомогательных устройств, таких как: насосы, компрессор для подачи воздуха, напуска водорода, увлажнитель газов, охлаждающий узел, система контроля утечки газов, конвертер постоянного тока в переменный, управляющий процессор и др. Все это ведет к тому, что стоимость системы топливных элементов в 2004-2005 годах составляла 2-3 тыс. $/кВт. Согласно оценке экспертов, топливные элементы станут доступными для применения на транспорте и в стационарных энергоустановках при цене 50-100 $/кВт.

Для введения топливных элементов в повседневную жизнь, наряду с удешевлением компонентов, нужно ожидать новых оригинальных идей и подходов. В частности, большие надежды связывают с применением наноматериалов и нанотехнологий. Например, недавно несколько компаний заявили о создании сверх-эффективных катализаторов, в частности, для кислородного электрода на основе кластеров наночастиц из различных металлов. Кроме того, появились сообщения о конструкции топливных элементов без мембран, в которых жидкое топливо (например, метанол) подается в топливный элемент вместе с окислителем. Интересной является также развиваемая концепция биотопливных элементов, работающих в загрязненных водах и потребляющих в качестве окислителя растворенный кислород воздуха, а органические примеси в качестве топлива.

По прогнозам специалистов, топливные элементы выйдут на массовый рынок в ближайшие годы. И действительно, разработчики друг за другом побеждают технические проблемы, рапортуют об успехах и представляют прототипы топливных элементов. Например, компания Toshiba продемонстрировала готовый прототип метанолового топливного элемента. Он имеет размер 22x56x4,5мм и дает мощность порядка 100мВт. Одной заправки в 2 кубика концентрированного (99,5%) метанола достаточно на 20 часов работы МРЗ-плеера. Toshiba выпустила коммерческий топливный элемент для питания мобильников. Опять же, та же Toshiba демонстрировала элемент для питания ноутбуков размером 275x75x40мм, дающий возможность компьютеру работать в течение 5 часов от одной заправки.

Не отстает от Toshiba и другая японская компания - Fujitsu. В 2004-м году она тоже представила элемент, действующий на 30% водном растворе метанола. Этот топливный элемент работал на одной заправке в 300мл на протяжении 10 часов и при этом выдавал мощность 15 Вт.

Casio разрабатывает топливный элемент, в котором метанол сперва перерабатывается в смесь газообразных H2 и CO2 в миниатюрном топливном преобразователе, а потом уже подается в топливный элемент. Во время демонстрации прототип Casio обеспечивал энергией ноутбук в течение 20 часов.

Компания Samsung тоже отметилась на ниве топливных элементов - в 2004-м году она демонстрировала свой прототип мощностью 12 Вт, предназначенный для питания ноутбука. Вообще же, Samsung предполагает применять топливные элементы, в первую очередь, в смартфонах четвертого поколения.

Надо сказать, что японские компании вообще очень обстоятельно подошли к разработке топливных элементов. Еще в 2003-м году такие компании как Canon, Casio, Fujitsu, Hitachi, Sanyo, Sharp, Sony и Toshiba объединили усилия с тем, чтобы разработать единый стандарт топливных элементов для ноутбуков, мобильных телефонов, КПК и других электронных устройств. Американские же компании, которых тоже немало на этом рынке, в большинстве своем работают по контрактам с военными и разрабатывают топливные элементы для электрификации американских солдат.

Не отстают и немцы - компания Smart Fuel Cell продает топливные элементы для питания мобильного офиса. Устройство называется Smart Fuel Cell C25, имеет габариты 150x112x65мм и может выдавать до 140 ватт-часов на одной заправке. Этого достаточно для питания ноутбука примерно в течение 7 часов. Затем картридж можно заменить и можно работать дальше. Размер картриджа с метанолом 99x63x27 мм, а весит он 150г. Сама система весит 1,1 кг, так что совсем уж портативной ее не назовешь, но все же это вполне законченное и удобное устройство. Также компания разрабатывает топливный модуль для питания профессиональных видеокамер.

В общем, топливные элементы уже практически вышли на рынок мобильной электроники. Производителям осталось решить последние технические задачи перед тем, как начать массовый выпуск.

Во-первых, необходимо решить вопрос с миниатюризацией топливных элементов. Ведь чем меньше топливный элемент, тем меньшую мощность он сможет выдавать - так что постоянно разрабатываются новые катализаторы и электроды, позволяющие при малых размерах максимально увеличить рабочую поверхность. Тут как раз очень кстати приходятся последние разработки в области нанотехнологий и наноматериалов (например, нанотрубки). Опять же, для миниатюризации обвязки элементов (топливных и водяных насосов, систем охлаждения и преобразования топлива) все шире начинают применяться достижения микроэлектромеханики.

Вторая важная проблема, требующая решения - это цена. Ведь в качестве катализатора в большинстве топливных элементов применяется очень дорогая платина. Опять же, некоторые из производителей пытаются по максимуму использовать уже хорошо отработанные кремниевые технологии.

Что касается других областей использования топливных элементов, то топливные элементы там уже достаточно прочно обосновались, хотя пока и не стали мэйнстримом ни в энергетике, ни на транспорте. Уже очень многие производители автомобилей представили свои концепт-кары с питанием от топливных элементов. В нескольких городах мира колесят автобусы на топливных элементах. Канадская Ballard Power Systems выпускает целый ряд стационарных генераторов мощностью от 1 до 250 кВт. При этом, киловаттные генераторы рассчитаны на то, чтобы сразу снабжать одну квартиру электричеством, теплом и горячей водой.

http://www.powerinfo.ru/


Сейчас самое время поделиться статьей и добавить ее в закладки!


Тематические разделы: Электрик Инфо » Интересные электротехнические новинки

Другие статьи:

  • 5 необычных способов получения электрической энергии
  • Электрическая энергия из растений - зеленые электростанции
  • Сверхпроводимость в электроэнергетике. Часть 2. Будущее за сверхпроводникам ...
  • Двусторонние солнечные элементы
  • Гибрид с супермаховиком и супервариатором
  • Химические источники тока: основные характеристики

  •  
      Комментарии:

    #1 написал: Максим | [цитировать]

     
     

    За топливными элементами будущее! Фактически, топливные элементы уже достигли своего совершеннолетия за счет широкого коммерческого использования. Можно выделить основные сферы их применения: транспорт, энергетика, и портативное использование.

    Топливные элементы рассматриваются как важное приложение в транспортном секторе, за счет их высокой эффективности в выработке электрохимической энергии. Нулевой выброс углекислого газа, вдохновляет мировых автопроизводителей. Транспортные средства на топливных ячейках являются автомобилями, в которых колеса приводятся в движение электродвигателем. Использование водорода и атмосферного кислорода позволяет создавать химические реакции, вырабатывая электричество. Вместо вредных выхлопов, мы получаем дистиллированную воду, которая никак не вредит окружающей среде. Правда, хотя такие системы эффективны и экологически безопасны, стоимость машин этого типа по-прежнему более высока, по сравнению с другими автомобилями.

    Несмотря на менее четко выраженное использование в рынке портативных устройств, возможности такого применения рассматриваются самым серьезным образом. Представьте себе сотовые телефоны, ноутбуки, планшеты, аккумуляторы для различных устройств и оборудования, которые нужно перезаряжать раз в неделю или в месяц. Поэтому статья очень даже актуальная! Нужно активно пропагандировать массовый переход на альтернативные источники энергии!

      Комментарии:

    #2 написал: Алиса | [цитировать]

     
     

    Никогда ничего не слышала про топливные элементы. Статья очень длинная, до конца так и не осилила, но поняла, что топливные элементы это типа новых современных батареек? Если так, то это очень интересно, вот только меня смущают их размеры. Влезут ли они в батарейки?

      Комментарии:

    #3 написал: andy78 | [цитировать]

     
     

    Алиса, влезут, обязательно когда нибудь влезут. Но это не только вместо батареек, еще много для чего еще.

      Комментарии:

    #4 написал: Aliona | [цитировать]

     
     

    Прикольно! Все эти идеи выглядят как-то фантастично, но если оценивать развитие науки и техники, то еще каких-то 70 лет назад представить не могли что связь будет беспроводной!!! А так как все равно придется искать замену возобновляемым энергоресурсам, то, на мой взгляд, топливные элементы - это очень перспективно  в энергетическом и экологическом плане! Поэтому когда ученые смогут покорить эту "вершину", нам во много плане станет легче!

    Алиса, когда полностью освоена будет эта технология, то они не то что в батарейки влезут, они может будут размером с горошину).

      Комментарии:

    #5 написал: Александр | [цитировать]

     
     

    Надеюсь что мощность малогабаритные топливных элементов будет расти и они смогут обеспечивать бесперебойную работу оборудования, которое не терпит перерыва в питании. Экологичность таких систем пусть и вызывает ряд вопросов, но все же это не кислоты. Вопросы подобных изобретений и наработок были еще и в советские времена.

      Комментарии:

    #6 написал: Алхимик | [цитировать]

     
     

    "Любимое дитя электрохимии" - книга Советских времён (84 - 88г.)
    История, описание жидко и твёрдотопливных (высокотемпературных) топливных элементов, проблемы, трудности и пути развития... Весьма познавательно и до сих пор актуально.

      Комментарии:

    #7 написал: К700 | [цитировать]

     
     

    Читал про топливные элементы лет этак 10-12 назад в "Науке и жизни", там же видел фото упомянутого в статье трактора на ТЭ.

    Думаю, это очень перспективное направление, особенно на транспорте. Можно к примеру сделать автомобиль на ТЭ с ионисторами в буфере, совместив таким образом некоторые преимущества автомобиля с ДВС и электромобиля.

    Добавление комментария
    Имя:*
    E-Mail:
    Комментарий:
    Введите код: *

    Электрика дома  | Электрообзоры  | Энергосбережение
    Секреты электрика | Источники света | Делимся опытом
    Домашняя автоматика | Электрика для начинающих
    Электромастерская | Электротехнические новинки

    Электрик Инфо - электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, обзоры электротехнических новинок, интересные факты и многое другое для электриков и домашних мастеров.
    Copyright © 2008-2016 electrik.info
    Е-mail: electroby@mail.ru Сайт в Google+
    Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+
    Перепечатка материалов сайта запрещена.

    Полезное

    Светодиодные лампы и светильники IEK