Электротехнический интернет-журнал Electrik.info

"Электрик Инфо" - онлайн журнал про электричество. Теория и практика. Обучающие статьи, примеры, технические решения, схемы, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
 


Схемы подключения | Принципиальные схемы | Электроснабжение
Розетки и выключатели | Автоматы защиты | Кабель и провод | Монтаж электропроводки Ремонт электротехники | Молодому электрику

Электрик Инфо » Электрическая энергия в быту и на производстве » Практическая электроника » Виды современных интегральных микросхем - типы логики, корпуса
Количество просмотров: 26669
Комментарии к статье: 1


Виды современных интегральных микросхем - типы логики, корпуса


Все современные микросхемы подразделяются на три типа: цифровые, аналоговые и аналого-цифровые, - в зависимости от того, с сигналами какого типа они работают. Сегодня мы поговорим о цифровых микросхемах, поскольку большинство микросхем в электронике — именно цифровые, они работают с цифровыми сигналами.

Цифровой сигнал имеет два стабильных уровня — логический ноль и логическая единица. У микросхем выполненных по разным технологиям уровни логических нуля и единицы различаются.

Внутри цифровых микросхем могут находиться различные элементы, названия которых известны любому электронщику: ОЗУ, ПЗУ, компаратор, сумматор, мультиплексор, дешифратор, шифратор, счетчик, триггер, различные логические элементы и т. д.

Виды современных интегральных микросхем

На сегодняшний день более всего распространены цифровые микросхемы технологий ТТЛ (транзисторно-транзисторная логика) и КМОП (комплиментарный металл-оксид-полупроводник).

У микросхем технологии ТТЛ уровень нуля равен 0,4В, а уровень единицы 2,4В. У микросхем технологии КМОП уровень нуля почти равен нулю, а уровень единицы — равен почти напряжению питания микросхемы. Нулевое напряжение у микросхемы КМОП получается путем подключения соответствующего вывода к общему проводу, а напряжение высокого уровня — подключением к шине питания.

В названии микросхемы указывается ее серия, отражающая тип технологии по которой изготовлена данная микросхема. Различные микросхемы имеют разную скорость работы, различаются по предельной частоте, по допустимому току выводов, энергопотреблению и т. д. Ниже приведена таблица, где представлены некоторые типы микросхем и их характеристики.

Характеристики популярных типов микросхем

Проектируя схему какого-нибудь электронного устройства, стараются использовать в первую очередь микросхемы одного типа логики, чтобы избежать несоответствия в уровнях цифровых сигналов (верхнего и нижнего уровней).

Микросхема на плате

Выбор конкретной логики микросхемы осуществляют исходя из требуемой рабочей частоты, энергопотребления и других характеристик микросхемы, а также ее стоимости. Однако иногда не получается обойтись микросхемами одного типа, ведь одна часть проектируемой схемы может потребовать например более высокой скорости, свойственной микросхемам технологии ЭСЛ, а другая — низкого энергопотребления, свойственного КМОП-микросхемам.

В таких случаях разработчики порой вынужденно прибегают к использованию дополнительных преобразователей уровней, хотя часто удается обойтись и без них: выходной сигнал с микросхемы КМОП можно подать на вход ТТЛ, но подавать сигнал с микросхемы ТТЛ на микросхему КМОП не рекомендуется. Далее давайте рассмотрим наиболее популярные корпуса современных микросхем.

DIP

Микросхемы в DIP-корпусе

Классический, часто встречающийся на старых платах корпус прямоугольной формы с двумя рядами выводов. PDIP – пластиковый корпус, CDIP – керамический корпус. Керамика имеет близкий к полупроводниковому кристаллу коэффициент температурного расширения, поэтому CDIP – корпус более надежен и долговечен, особенно если микросхема используется в тяжелых климатических условиях.

В обозначении микросхемы указывается количество выводов: DIP8, DIP14, DIP16 и т. д. Микросхемы серии ТТЛ-логика 7400 имеет традиционный корпус DIP14. Данный корпус хорошо подходит как для автоматизированной, так и для ручной сборки при выводном монтаже (в отверстия на плате).

Компоненты в корпусах DIP выпускаются обычно с количеством выводов от 8 до 64. Шаг между выводами 2,54 мм, расстояние между рядами 7,62, 10,16, 15,24 или 22,86 мм.

Переходник для DIP-микросхем

Нумерация выводов начинается с верхнего левого и идет против часовой стрелки. Первый вывод находится возле ключа — специальной выемки либо круглого углубления на одном из краев корпуса микросхемы. Если смотреть сверху на маркировку, расположив корпус микросхемы выводами вниз, то первый вывод будет всегда сверху слева, далее счет идет по левой стороне вниз, затем по правой стороне снизу — вверх.

Полезная электроника своими руками, электронные самоделки в Telegram: Практическая электроника на каждый день

SOIC

Микросхемы в корпусе SOIC

Прямоугольный корпус микросхем для поверхностного (планарного) монтажа. Два ряда выводов расположены с двух сторон микросхемы. Практически корпуса SOIC занимают на платах почти на треть, а иногда и вдвое меньше места чем корпуса DIP, к тому же корпус SOIC втрое тоньше чем DIP.

Сравнение корпусов и размеров микросхем

Нумерация выводов, если смотреть на микросхему сверху, начинается слева сверху от ключа в виде круглого углубления, затем идет против часовой стрелки. Корпуса обозначаются SO8, SO14 и т. д., в соответствии с количеством выводов: 8, 14, 16, 20, 24, 28, 32 и 54. Расстояние между выводами 1,27 мм. Почти все современные DIP-микросхемы имеют сегодня аналоги для планарного монтажа в корпусах SOIC.

PLCC (CLCC)

Микросхемы в корпусе PLCC (CLCC)

PLCC – пластиковый и СLCC — керамический планарные корпуса квадратной формы с контактами по краям с четырех сторон. Данный корпус предназначен для пайки поверхностным (планарным) монтажом на плату либо для установки в специальную панель (часто называемую «кроваткой»).

Микросхема в корпусе PLCC

В настоящее время широкое распространение получили микросхемы флэш-памяти в корпусе PLCC, используемые в качестве микросхемы BIOS на системных платах. На микросхему при необходимости легко может быть установлен радиатор, как и на SOIC. Шаг между ножками 1,27 мм. Количество выводов от 20 до 84.

TQFP

TQFP — тонкий квадратный корпус микросхемы для поверхностного монтажа

TQFP — тонкий квадратный корпус микросхемы для поверхностного монтажа, схожий с PLCC. Отличается меньшей толщиной (всего 1 миллиметр) и имеет стандартный размер выводов (2 миллиметра).

Монтаж микросхемы TQFP

Возможное количество выводов от 32 до 176 при размере одной стороны корпуса от 5 до 20 миллиметров. Используются медные выводы с шагом 0.4, 0.5, 0.65, 0.8 и 1 миллиметр. TQFP позволяет решить такие задачи, как увеличение плотности размещения компонентов на печатных платах, уменьшение размеров подложки, уменьшение толщины корпусов устройств.

Смотоите также: Как делают интегральные микросхемы

Андрей Повный

Популярные публикации:

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника

Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день



Поделитесь этой статьей с друзьями:


Другие статьи с сайта Электрик Инфо:

  • Логические микросхемы. Часть 3
  • Как проверить микросхему на работоспособность
  • Логические микросхемы. Часть 1.
  • Логические микросхемы. Часть 2 - логические элементы
  • Микросхема 4046 (К564ГГ1) для устройств с удержанием резонанса - принцип ра ...
  • Как делают интегральные микросхемы
  • Логические микросхемы. Часть 9. JK триггер
  • Простой регулятор мощности для плавного включения ламп
  • Триггер Шмитта - общее представление
  • Легендарные аналоговые микросхемы
  • Категория: Электрическая энергия в быту и на производстве » Практическая электроника

    Цифровая электроника, Аналоговая электроника, Микросхемы, Андрей Повный – все статьи

      Комментарии:

    #1 написал: Сергей |

    Существует множество видов современных интегральных микросхем, которые используются в различных устройствах и системах. Вот некоторые из них: – Микросхемы логики: это микросхемы, которые используются для выполнения логических операций. Они могут быть выполнены в различных корпусах, таких как DIP, SOIC, QFN и других.

    • Аналоговые микросхемы: эти микросхемы используются для обработки аналоговых сигналов, таких как аудио, видео и другие. Они могут иметь различные корпуса, такие как LCC, QFN, TQFP и другие.
    • Цифровые микросхемы: эти микросхемы выполняют цифровые операции, такие как обработка данных, управление питанием и другие. Корпуса этих микросхем могут быть различными, например BGA, CSP, QFN и другие.
    • Микроконтроллеры: это микросхемы, которые содержат процессор, память, порты ввода-вывода и другие компоненты, необходимые для управления устройством. Корпуса микроконтроллеров могут быть различными, такими как QFN, BGA, TQFP и другими.
    • ПЛИС (Программируемые логические интегральные схемы): эти микросхемы используются для реализации сложных логических функций и систем. Корпуса ПЛИС могут быть различными, включая BGA, QFP, TQFP и другие.

    Присоединяйтесь к нам в социальных сетях:

    ВКонтакте | Facebook | Одноклассники | Электрик Инфо на Яндекс Дзен

     

    Популярные разделы сайта:

    Электрика дома  Электрообзоры  Энергосбережение
    Секреты электрика Источники света Делимся опытом
    Домашняя автоматика Электрика для начинающих
    Практическая электроника Электротехнические новинки
    Андрей Повный - все статьи автора



    Copyright © 2009-2024 Электрик Инфо - Electrik.info, Андрей Повный
    Вся информация на сайте предоставлена в ознакомительных и познавательных целях.
    За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.