Электротехнический интернет-журнал Electrik.info

 
 

Сайт электрика

Электрик Инфо » Электромастерская

Про резисторы для начинающих заниматься электроникой

Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

Про резисторы для начинающих заниматься электроникойРадиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», зарядные устройства для аккумуляторов, регуляторы оборотов электродвигателей, частотные преобразователи для трехфазных двигателей, преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны схемы фотореле для включения освещения, охранные устройства и сигнализация, а также многое другое.

Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

Компоненты электронных схем

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, микроконтроллеры и многое другое.

Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

К пассивным относятся такие детали, как резисторы, конденсаторы, катушки индуктивности, диоды и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

Резисторы

Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных схемах включения транзисторов.

Схемы включения светодиода

Рисунок 1. Схемы включения свтодиода

Свойства резисторов

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы.

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

Резисторы на схемах

Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

УГО резисторов

Рисунок 2. УГО резисторов

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I2 * R, P = U2 / R.

Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 – 5,1МОм.

Современная маркировка резисторов

В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Маркировка резисторов

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип - резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Резисторы для поверхностного монтажа SMD

Рисунок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

Соединение резисторов

Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Схемы соединения резисторов

Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в делителях напряжения. Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

Продолжение читайте в следующей статье.

Борис Аладышкин 


Сейчас самое время поделиться статьей и добавить ее в закладки!


Тематические разделы: Электрик Инфо » Электромастерская

Другие статьи:

  • Способы соединения приемников электрической энергии
  • Измерение тока
  • Основы электротехники для любителей компьютерного моддинга
  • Измерение напряжения
  • Схемы на операционных усилителях с обратной связью
  • Хорошие и плохие схемы включения светодиодов

  •  
    Добавление комментария
    Имя:*
    E-Mail:
    Комментарий:
    Введите код: *

    Электрика дома  | Электрообзоры  | Энергосбережение
    Секреты электрика | Источники света | Делимся опытом
    Домашняя автоматика | Электрика для начинающих
    Электромастерская | Электротехнические новинки

    Электрик Инфо - электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, обзоры электротехнических новинок, интересные факты и многое другое для электриков и домашних мастеров.
    Copyright © 2008-2016 electrik.info
    Е-mail: electroby@mail.ru Сайт в Google+
    Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+
    Перепечатка материалов сайта запрещена.

    Полезное

    Светодиодные лампы и светильники IEK