Электротехнический интернет-журнал Electrik.info

"Электрик Инфо" - онлайн журнал про электричество. Теория и практика. Обучающие статьи, примеры, технические решения, схемы, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
 


Схемы подключения | Принципиальные схемы | Электроснабжение
Розетки и выключатели | Автоматы защиты | Кабель и провод | Монтаж электропроводки Ремонт электротехники | Молодому электрику

Электрик Инфо » Электрическая энергия в быту и на производстве » Практическая электроника » Полевые транзисторы: принцип действия, схемы, режимы работы и моделирование
Количество просмотров: 490628
Комментарии к статье: 15


Полевые транзисторы: принцип действия, схемы, режимы работы и моделирование


Мы уже рассмотрели устройство биполярных транзисторов и их работу, теперь давайте узнаем о том, какие бывают полевые транзисторы. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной. Сейчас в большей степени используются приборы с изолированным затвором, о типах полевых транзисторов и их особенностях сегодня мы и поговорим. В статье я буду проводить сравнение с биполярными транзисторами, в отдельных местах.

Содержание статьи

Полевой транзистор

Определение

Полевой транзистор – это полупроводниковый полностью управляемый ключ, управляемый электрическим полем. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током. Электрическое поле создается напряжением, приложенным к затвору относительно истока. Полярность управляющего напряжения зависит от типа канала транзистора. Здесь прослеживается хорошая аналогия с электронными вакуумными лампами.

Устройство полевого транзистора

Другое название полевых транзисторов – униполярные. «УНО» - значит один. В полевых транзисторах в зависимости от типа канала ток осуществляется только одним типом носителей дырками или электронами.

В биполярных транзисторах ток формировался из двух типов носителей зарядов – электронов и дырок, независимо от типа приборов. Полевые транзисторы в общем случае можно разделить на:

  • транзисторы с управляющим p-n-переходом;

  • транзисторы с изолированным затвором.

И те и другие могут быть n-канальными и p-канальными, к затвору первых нужно прикладывать положительное управляющее напряжение для открытия ключа, а для вторых – отрицательное относительно истока.

У всех типов полевых транзисторов есть три вывода (иногда 4, но редко, я встречал только на советских и он был соединен с корпусом).

1. Исток (источник носителей заряда, аналог эмиттера на биполярном).

2. Сток (приемник носителей заряда от истока, аналог коллектора биполярного транзистора).

3. Затвор (управляющий электрод, аналог сетки на лампах и базы на биполярных транзисторах).

Транзистор с управляющим pn-переходом

Транзистор состоит из таких областей:

1. Канал;

2. Сток;

3. Исток;

4. Затвор.

На изображении вы видите схематическую структуру такого транзистора, выводы соединены с металлизированными участками затвора, истока и стока. На конкретной схеме (это p-канальный прибор) затвор – это n-слой, имеет меньше удельное сопротивление, чем область канала (p-слой), а область p-n-перехода в большей степени расположена в p-области по этой причине.

Схематичная структура транзистора

Условное графическое обозначение:

 

Условное графическое обозначение

а – полевой транзистор n-типа, б – полевой транзистор p-типа

Чтобы легче было запомнить, вспомните обозначение диода, где стрелка указывает от p-области в n-область. Здесь также.

Первое состояние – приложим внешнее напряжение.

Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Можно провести аналогию с нормально-замкнутым ключом. Этот ток называется Iснач или начальный ток стока при Uзи=0.

Полевой транзистор с управляющим p-n-переходом, без приложенного управляющего напряжения к затвору является максимально открытым.

Напряжение к стоку и истоку прикладывается таким образом:

Через исток вводятся основные носители зарядов!

Это значит, что если транзистор p-канальный, то к истоку подключают положительный вывод источника питания, т.к. основными носителями являются дырки (положительные носители зарядов) – это так называемая дырочная проводимость. Если транзистор n-канальный к истоку подключают отрицательный вывод источника питания, т.к. в нем основными носителями заряда являются электроны (отрицательные носители зарядов).

Исток - источник основных носителей заряда.

Вот результаты моделирования такой ситуации. Слева расположен p-канальный, а справа n-канальный транзистор.

Моделирование поевого транзистора

Второе состояние – подаём напряжение на затвор

При подаче положительного напряжения на затвор относительно истока (Uзи) для p-канального и отрицательное для n-канального, он смещается в обратном направлении, область p-n-перехода расширяется в сторону канала. В резльтате чего ширина канала уменьшается, ток снижается. Напряжение затвора, при котором ток через ключ перестает протекать называется, напряжением отсечки.

Работа транзистора

Ключ начинает закрываться.

Ключ начинает закрываться

Достигнуто напряжение отсечки, и ключ полностью закрыт. На картинке с результатами моделирования отображено такое состояние для p-канального (слева) и n-канального (справа) ключа. Кстати на английском языке такой транзистор называется JFET.

Результаты моделирования

Режимы работы

Рабочий режим транзистора при напряжение Uзи либо нулевое, либо обратное. За счет обратного напряжения можно «прикрывать транзистор», используется в усилителях класса А и прочих схемах где нужно плавное регулирование.

Режим отсечки наступает, когда Uзи=Uотсечки для каждого транзистора оно своё, но в любом случае прикладывается в обратном направлении.

Характеристики, ВАХ

Выходной характеристикой называют график, на котором изображена зависимость тока стока от Uси (приложенного к выводам стока и истока), при различных напряжениях затвора.

Характеристики транзистора

Можно разбить на три области. Вначале (в левой части графика) мы видим омическую область – в этом промежутке транзистор ведет себя как резистор, ток возрастает почти линейно, доходя до определенного уровня, переходит в область насыщения (в центре графика).

В правой части график мы видим, что ток опять начинает расти, это область пробоя, здесь транзистор находиться не должен. Самая верхняя ветвь изображенная на рисунке – это ток при нулевом Uзи, мы видим, что ток здесь самый большой.

Чем больше напряжение Uзи, тем меньше ток стока. Каждая из ветвей отличается на 0.5 вольта на затворе. Что мы подтвердили моделированием.

Характеристики

Здесь изображена стоко-затворная характеристика, т.е. зависимость тока стока от напряжения на затворе при одинаковом напряжении стока-исток (в данном примере 10В), здесь шаг сетки также 0.5В, мы опять видим что чем ближе напряжение Uзи к 0, тем больший ток стока.

В биполярных транзисторах был такой параметр как коэффициент передачи тока или коэффициент усиления, он обозначался как B или H21э или Hfe. В полевых же для отображения способности усиливать напряжение используется крутизна обозначается буквой S

S=dIc/dUзи

То есть крутизна показывает, насколько миллиАмпер (или Ампер) растёт ток стока при увеличении напряжения затвор-исток на количество Вольт при неизменяемом напряжении сток-исток. Её можно вычислить исходя из стоко-затворной характеристики, на приведенном выше примере крутизна равняется порядка 8 мА/В.

Схемы включения

Как и у биполярных транзисторов есть три типовых схемы включения:

1. С общим истоком (а). Используется чаще всех, даёт усиление по току и мощности.

2. С общим затвором (б). Редко используется, низкое входное сопротивления, усиления нет.

3. С общим стоком (в). Усиление по напряжению близко к 1, большое входное сопротивление, а выходное низкое. Другое название – истоковый повторитель.

Три типовых схемы включения

Особенности, преимущества, недостатки

  • Главное преимущество полевого транзистора высокое входное сопротивление. Входное сопротивление это отношения тока к напряжению затвор-исток. Принцип действия лежит в управлении с помощью электрического поля, а оно образуется при приложении напряжения. То есть полевые транзисторы управляются напряжением.

  • Полевой транзистор практически не потребляет тока управления, это снижает потери управления, искажения сигнала, перегрузку по току источника сигнала…

  • В среднем частотные характеристики полевых транзисторов лучше, чем у биполярных, это связано с тем, что нужно меньше времени на «рассасывание» носителей заряда в областях биполярного транзистора. Некоторые современные биполярные транзисторы могут и превосходить полевые, это связано с использованием более совершенных технологий, уменьшения ширины базы и прочего.

  • Низкий уровень шумов у полевых транзисторов обусловлен отсутствием процесса инжекции зарядов, как у биполярных.

  • Стабильность при изменении температуры.

  • Малое потребление мощности в проводящем состоянии – больший КПД ваших устройств.

Простейший пример использования высокого входного сопротивление – это приборы согласователи для подключения электроакустических гитар с пьезозвукоснимателями и электрогитар с электромагнитными звукоснимателями к линейным входам с низким входным сопротивлением.

Низкое входное сопротивление может вызвать просадки входного сигнала, исказив его форму в разной степени в зависимости от частоты сигнала. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Вот простейшая схема такого устройства. Подойдет для подключения электрогитар в линейный вход аудио-карты компьютера. С ней звук станет ярче, а тембр богаче.

Схема включения транзистора

Главным недостатком является то, что такие транзисторы боятся статики. Вы можете взять наэлектризованными руками элемент, и он тут же выйдет из строя, это и есть следствие управления ключом с помощью поля. С ними рекомендуют работать в диэлектрических перчатках, подключенным через специальный браслет к заземлению, низковольтным паяльником с изолированным жалом, а выводы транзистора можно обвязать проволокой, чтобы закоротить их на время монтажа.

Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения.

Иногда у начинающих радиолюбителей опасения доходят до абсурда, типа надевания на голову шапочек из фольги. Всё описанное выше хоть и является обязательным к исполнению, но не соблюдение каких либо условий не гарантирует выход из строя прибора.

Полевые транзисторы с изолированным затвором

Этот вид транзисторов активно используется в качестве полупроводниковых управляемых ключей. Причем работают они чаще всего именно в ключевом режиме (два положения «вкл» и «выкл»). У них есть несколько названий:

1. МДП-транзистор (метал-диэлектрик-полупроводник).

2. МОП-транзистор (метал-окисел-полупроводник).

3. MOSFET-транзистор (metal-oxide-semiconductor).

Запомните – это лишь вариации одного названия. Диэлектрик, или как его еще называют окисел, играет роль изолятора для затвора. На схеме ниже изолятор изображен между n-областью около затвора и затвором в виде белой зоны с точками. Он выполнен из диоксида кремния.

Диэлектрик исключает электрический контакт между электродом затвора и подложкой. В отличие от управляющего p-n-перехода он работает не на принципе расширения перехода и перекрытия канала, а на принципе изменения концентрации носителей заряда в полупроводнике под действием внешнего электрического поля. МОП-транзисторы бывают двух типов:

1. Со встроенным каналом.

2. С индуцированным каналом

Транзисторы со встроенным каналом

На схеме вы видите транзистор с встроенным каналом. Из неё уже можно догадаться, что принцип его работы напоминает полевой транзистор с управляющим p-n-переходом, т.е. когда напряжение затвора равно нулю – ток протекает через ключ.

Транзисторы со встроенным каналом

Около истока и стока созданы две области с повышенным содержанием примесных носителей заряда (n+) с повышенной проводимостью. Подложкой называется основание P-типа (в данном случае).

Обратите внимание, что кристалл (подложка) соединена с истоком, на многих условных графических обозначениях он так и рисуется. При повышении напряжения на затворе в канале возникает поперечное электрическое поле, оно отталкивает носители зарядов (электроны) и канал закрывается при достижении порогового Uзи.

Режимы работы

При подаче отрицательного напряжения затвор-исток ток стока падает, транзистор начинает закрывать – это называется режим обеднения.

При подаче положительного напряжения на затвор-исток происходит обратный процесс – электроны притягиваются, ток возрастает. Это режим обогащения.

Режимы работы

Всё вышесказанное справедливо для МОП-транзисторов со встроенным каналом N-типа. Если канал p-типа все слова «электроны» заменяются на «дырки», полярности напряжения изменяются на противоположные.

Моделирование

Транзистор со встроенным каналом n-типа с нулевым напряжением на затворе:

Транзистор со встроенным каналом n-типа с нулевым напряжением на затворе

Подадим на затвор -1В. Ток снизился в 20 раз.

Подадим на затвор -1В. Ток снизился в 20 раз

Согласно datasheet на этот транзистор пороговое напряжение затвор-исток у нас в районе одного вольта, а типовое его значение – 1.2 В, проверим это.

 

Datasheet на транзистор
Моделирование

Ток стал в микроамперах. Если еще немного повысить напряжение, он исчезнет полностью.

Если еще немного повысить напряжение, он исчезнет полностью

Я выбрал транзистор наугад, и мне попался достаточно чувствительный прибор. Попробую изменить полярность напряжения, чтобы на затворе был положительный потенциал, проверим режим обогащения.

Режим обогащения

При напряжении на затворе 1В ток увеличился в четыре раза, по сравнению с тем, что был при 0В (первая картинка в этом разделе). Отсюда следует, что в отличие от предыдущего типа транзисторов и биполярных транзисторов он без дополнительной обвязки может работать как на повышение тока, так и на понижение. Это заявление весьма грубо, но в первом приближении имеет право на существование.

Характеристики

Здесь всё практически так же как и в транзисторе с управляющим переходом, за исключением наличия режима обогащения в выходной характеристике.

Характеристики

На стоко-затворной характеристике четко видно, что отрицательное напряжение вызывает режим обеднение и закрытие ключа, а положительное напряжение на затворе – обогащение и большее открытие ключа.

Транзисторы с индуцированным каналом

МОП-транзисторы с индуцированным каналом не проводят ток при отсутствии напряжения на затворе, вернее ток есть, но он крайне мал, т.к. это обратный ток между подложкой и высоколегированными участками стока и истока.

Транзисторы с индуцированным каналом

Полевой транзистор с изолированным затвором и индуцированным каналом аналог нормально-разомкнутого ключа, ток не протекает.

При наличии напряжения затвор-исток, т.к. мы рассматриваем n-тип индуцируемого канала то напряжение положительное, под действием поля притягиваются отрицательные носители зарядов в область затвора.

Так появляется «коридор» для электронов от истока к стоку, таким образом, появляется канал, транзистор открывается, и ток через него начинает протекать. Подложка у нас p-типа, в ней основными являются положительные носители зарядов (дырки), отрицательных носителей крайне мало, но под действием поля они отрываются от своих атомов, и начинается их движение. Отсюда отсутствие проводимости при отсутствии напряжения.

Характеристики

Выходная характеристика в точности повторяет такую же у предыдущих разница заключается лишь в том, что напряжения Uзи становятся положительными.

Характеристики

Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.

Стоко-затворная характеристика

При рассмотрении вольтамперных характеристик крайне важно внимательно смотреть на величины, прописанные по осям.

Моделирование

На ключ подали напряжение 12 В, а на затворе у нас 0. Ток через транзистор не протекает.

Моделирование

Добавим 1 вольт на затвор, но ток и не думал протекать…

Моделирование

Добавляя по одному вольту я обнаружил, что ток начинает расти с 4в.

Ток начинает расти с 4в

Добавив еще 1 Вольт, ток резко возрос до 1.129 А.

Добавив еще 1 Вольт, ток резко возрос до 1.129 А

В Datasheet указано пороговое напряжение открытия этого транзистора на участке от 2-х до 4-х вольт, а максимальное на затвор-истор от -20, до +20 В, дальнейшие приращения напряжения не дали результатов и на 20 вольтах (несколько миллиампер я не считаю, в данном случае).

Моделирование

Это значит, что транзистор полностью открыт, если бы его не было, ток в этой цепи составил бы 12/10=1.2 А. В дальнейшем я изучал как работает этот транзистор, и выяснил, что на 4-х вольтах он начинает открываться.

Добавляя по 0.1В, я заметил, что с каждой десятой вольта ток растёт всё больше и больше, и уже к 4.6 Вольта транзистор практически полностью открыт, разница с напряжением на затворе в 20В в токе стока всего лишь 41 мА, при 1.1 А – это чепуха.

Моделирование полевого транзистора

Этот эксперимент отражает то, что транзистор с индуцированным каналом открывается только при достижении порогового напряжения, что позволяет ему отлично работать в качестве ключа в импульсных схемах. Собственно, IRF740 – один из наиболее распространенных в импульсных блоках питания.

Результаты измерений тока затвора показали, что действительно полевые транзисторы почти не потребляют управляющего тока. При напряжении в 4.6 вольта ток был, всего лишь, 888 нА (нано!!!).

При напряжении в 20В он составлял 3.55 мкА (микро). У биполярного транзистора он был бы порядка 10 мА, в зависимости от коэффициента усиления, что в десятки тысяч раз больше чем у полевого.

Моделирование полевого транзистора

Не все ключи открываются такими напряжениями, это связано с конструкцией и особенностями схемотехники устройств где они применяются.

Особенности использования ключей с изолированным затвором

Два проводника, а между ними диэлектрик – что это? Это транзистор, собственно затвор имеет паразитную ёмкость, она замедляет процесс переключения транзистора. Это называется плато Миллера, вообще этот вопрос достоин отдельного серьезного материала с точным моделированием, с применением другого софта (не проверял эту особенность в multisim).

Разряженная ёмкость в первый момент времени требует большого зарядного тока, да и редкие управляющие устройства (шим-контроллеры и микроконтроллеры) имеют сильные выходы, поэтому используют драйверы для полевых затворов, как в полевых транзисторах, так и в IGBT (биполярный с изолированным затвором). Это такой усилитель, который преобразует входной сигнал в выходной такой величины и силы тока, достаточный для включения и выключения транзистора. Ток заряда также ограничивается последовательно соединенным с затвором резистором.

Особенности использования ключей с изолированным затвором

При этом некоторые затворы могут управляться и с порта микроконтроллера через резистор (тот же IRF740). Эту тему мы затрагивали в цикле материалов об arduino.

Условные графические изображения

Они напоминают полевые транзисторы с управляющим затвором, но отличаются тем, что на УГО, как и в самом транзисторе, затвор отделен от подложки, а стрелка в центре указывает на тип канала, но направлена от подложки к каналу, если это n-канальный mosfet – в сторону затвора и наоборот.

Для ключей с индуцированным каналом:

Условные графические изображения

Может выглядеть так:

Условные графические изображения

Обратите внимание на англоязычные названия выводов, в datasheet’ах и на схемах часто указываются они.

Для ключей со встроенным каналом:

Условные графические изображения

Популярные публикации:

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника

Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день



Поделитесь этой статьей с друзьями:


Другие статьи с сайта Электрик Инфо:

  • Биполярные и полевые транзисторы - в чем различие
  • Виды транзисторов и их применение
  • Как подобрать аналог транзистора
  • Как проверить полевой транзистор
  • Выбор драйвера для MOSFET (пример расчета по параметрам)
  • IGBT-транзисторы - основные компоненты современной силовой электроники
  • Классификация транзисторов
  • Почему горят транзисторы
  • Управление затвором MOSFET и IGBT, затворный резистор, шунтирующий конденса ...
  • Силовые MOSFET и IGBT транзисторы, отличия и особенности их применения
  • Категория: Электрическая энергия в быту и на производстве » Практическая электроника

    Транзисторы для чайников, Принцип работы транзистора, Широтно-импульсная модуляция, Аналоговая электроника

      Комментарии:

    #1 написал: Алексей |

    Очень подробно все расписано, с первого раза сложно вникнуть, но общее представление получил. Надеюсь, что с практикой закреплю все ньюансы, спасибо за материал!

      Комментарии:

    #2 написал: Дмитрий |

    Всё запутано, нет логической цепочки!

    Иллюстрации неполные!

      Комментарии:

    #3 написал: Aleksandr |

    Спасибо БРО за толковый материал! Читал на одном вдохе! Зашло с первого раза, но для конечного усвоения необходимо повторять прочитанный текст!

      Комментарии:

    #4 написал: Геннадий |

    Всё толково. Спасибо!

      Комментарии:

    #5 написал: Ирина |

    Спасибо, доступно и толково.

      Комментарии:

    #6 написал: nva |

    Для транзистора IRF740 напряжение затвора должно быть положительным, а на схеме - отрицательное, хотя на показаниях мультиметра - положительное.

      Комментарии:

    #7 написал: Buriboy |

    Я бы советовал читать книги, типа юный радиолюбитель и электроника шаг за шагом, очень хорошие книги. Это статья не так уж хорошая как хочется, но всё таки не так уж плохая, в общем, спасибо за статью.

      Комментарии:

    #8 написал: Евгений |

    Статья хорошая, но на некоторых схемах не правильная полярность исток-затвор.

      Комментарии:

    #9 написал: АЛИМ |

    Взялся писать - пиши хорошо. Где-то (второстепенное) излагается детально-предетально...А где-то (где очень нужна детализация) написано тупо аристократично: полтора слова (видимо, сам не понимаешь детально...признайся себе)...Исправляй ошибки, в целом будет полезна! Кстати, английские аббревиатуры необязательны! А вот детализация (лучше везде) очень важна...А о пишут все...умники...и видно, что не варят сами...Кто варит - ему писать вкусно! И вкусно излагает (сам кайфует от процесса изложения)
    Давай, не обижайся, подкорректируй текст - все БУДУТ БЕГАТЬ  К ТЕБЕ!  И Я ТОЖЕ!

      Комментарии:

    #10 написал: Альберт |

    nva,
    там положительный вывод к общему проводу подключен, а под элементом написано "-4.6 вольта". Т.е. напряжение всегда указывается относительно "условно отрицательного вывода", на обозначении гальванического элемента это короткая ножка. То есть -4.6 вольта это на длинной ножке (на условном плюсе). Соответственно относительно длинной ножки там 4.6 вольта. Скорее всего программа не дала нормально подключить. Multisim старых версий часто подобные "приколы" устраивает, во время работы.

      Комментарии:

    #11 написал: Настя |

    Интересует полевые транзисторы это
      Комментарии:

    #12 написал: Роберт |

    Полевые транзисторы характеризуются тем, что ток в них протекает через полупроводник с проводящим типом, поэтому выходной ток является в их случае функцией управляющего напряжения. Принцип действия прост: полупроводник снабжен двумя электродами, истоком S и стоком D, между которыми протекает ток (так называемый канал). Вдоль канала проходит дополнительный третий электрод (затвор G), который под действием приложенного напряжения изменяет проводимость канала и тем самым влияет на протекающий ток. Таким простым способом полевой транзистор позволяет управлять током в заданной цепи.

      Комментарии:

    #13 написал: Сергей Сергеевич |

    МОП-транзистор — это однополярное устройство, работающее от напряжения. Его применение в промышленности очень распространено из-за его способности усиливать или переключать электронные сигналы. МОП-транзистор (полевой транзистор металл-оксид-полупроводник), по его аббревиатуре на английском языке, означает полевой транзистор металл-оксид-полупроводник. Первое MOSFET-устройство было создано путем установки изолирующего слоя на полупроводник, который, в свою очередь, включал в себя металлический электрод затвора. Сегодня это устройство входит в состав почти всех электронных элементов, представленных на рынке. 

      Комментарии:

    #14 написал: Котофей |

    Полевые транзисторы отличаются от биполярных тем, что управление током в них осуществляется через затвор, а не через базу. Это позволяет им иметь более высокое входное сопротивление и более эффективную работу на высоких частотах. Кроме того, полевые транзисторы имеют меньшее падение напряжения, что делает их более эффективными для использования в усилителях и других приложениях, где важна мощность. Однако, биполярные транзисторы могут иметь более высокую скорость переключения.

      Комментарии:

    #15 написал: Игорь |

    МДП-транзистор, или MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), представляет собой уникальную разновидность полевого транзистора, обладающего рядом выдающихся характеристик. Основное отличие этого устройства заключается в присутствии изолированного затвора, который эффективно отделяет затвор от активного слоя с использованием слоя диэлектрика, обычно представленного диоксидом кремния.

    Такая конструкция МДП-транзистора позволяет успешно преодолеть некоторые недостатки, свойственные другим типам полевых транзисторов. Один из таких недостатков - это явление захвата и рассеивания носителей заряда на границе активного слоя, что может снижать производительность и эффективность устройства.

    Управление МДП-транзистором осуществляется путем приложения напряжения на его затвор. Например, для MOSFET с индуцированным n-каналом, подача положительного напряжения на затвор обедняет p-область активного слоя основными носителями заряда. При превышении порогового значения напряжения создается слой с инверсионным слоем проводимости (n), который соединяет области стока и истока n-каналом. По этому каналу происходит поток электрического тока.

    МДП-транзисторы играют фундаментальную роль в современной электронике и нашли широкое применение в различных электронных устройствах. Их выдающаяся производительность и управляемость делают их важной составной частью многих современных технологических решений.

    Присоединяйтесь к нам в социальных сетях:

    ВКонтакте | Facebook | Одноклассники | Электрик Инфо на Яндекс Дзен

     

    Популярные разделы сайта:

    Электрика дома  Электрообзоры  Энергосбережение
    Секреты электрика Источники света Делимся опытом
    Домашняя автоматика Электрика для начинающих
    Практическая электроника Электротехнические новинки
    Андрей Повный - все статьи автора



    Copyright © 2009-2024 Электрик Инфо - Electrik.info, Андрей Повный
    Вся информация на сайте предоставлена в ознакомительных и познавательных целях.
    За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.