Электротехнический интернет-журнал Electrik.info

"Электрик Инфо" - онлайн журнал про электричество. Теория и практика. Обучающие статьи, примеры, технические решения, схемы, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
 


Электрик Инфо » Избранные статьи » Устройства автоматики » Пример использования современных средств автоматизации в теплице
Количество просмотров: 8362
Комментарии к статье: 0


Пример использования современных средств автоматизации в теплице


Теплицы - это сооружения, предназначенные для выращивания натуральных овощей в более короткий промежуток времени, чем в открытом грунте. Использование теплиц распространено как у частных владельцев, так и в сельском хозяйстве в целом.

Раньше автоматизация работы теплицы была дорогостоящей, а порой и неокупаемой процедурой, но на данный момент решение этой проблемы не столь дорого и вполне окупается, а в дальнейшем, к тому же, приносит еще большую выгоду.

Теплица

Многие факторы, нужные для эффективного выращивания овощных культур, требуют применения современной автоматики, например:

1) Автоматическое поддержание оптимальной температуры воздуха;

2) Автоматический полив;

3) Автоматическое включение освещения;

4) Автоматический подогрев почвы.

Автоматическое поддержание оптимальной температуры воздуха

При выращивании помидоров и огурцов, как наиболее распространённых культур выращиваемых в теплицах желательно чтобы температура воздуха была от +18 до +25 °С днем и не ниже +16 °С ночью. Температура почвы от +10 °С и выше.

Понижение температуры осуществляется с помощью актуаторов, которые открывают форточки теплицы для проветривания при повышении температуры воздуха. Для этих целей можно также использовать шаговые двигатели, по сигналу открывающие форточки на нужный угол. 

Актуатор

Актуатор

Актуаторы желательно использовать не только с датчиком температуры, но и с датчиком ветра, чтобы не навредить растениям. В роли датчика температуры воздуха можно использовать простой и не дорогой цифровой датчик DS18B20.

 

 

Датчик DS18B20

Полив растений

Автоматический полив осуществляется с помощью датчиков влажности, которые ограничивают полив, но также совместно с ними лучше использовать датчик расхода воды, так как простые, недорогие датчики почвы очень быстро окисляются и выходят из строя. Для малых фермерских хозяйств можно использовать самодельные датчики влажности на базе таймера NE555.

Современной данную микросхему не назовёшь, зато она зарекомендовала себя как надёжное электронное средство, применяемое во многих областях. Электроды должны быть выполнены из графита, который не окисляется. Выход 3 микросхемы подключён к светодиоду, который сигнализирует о выходе влажности за пределы. Данный выход можно так-же подключить к системе управления и по сигналу от него отключать или включать полив.

Датчик влажности почвы на микросхеме NE555

Датчик влажности почвы на микросхеме NE555

Важно знать необходимый расход воды в день (который будет зависеть от площади теплицы, потребности выращиваемых растений в воде, плотности их посадки и т.д.), тогда достаточно проводить управление поливом с помощью датчиков расхода воды по времени, а датчики влажности использовать в качестве аварийных сигнализаторов перелива.

Управление освещением

Автоматическое освещение проще всего реализуется с помощью простого фоторезистора. При уменьшении света его сопротивление повышается и таким образом формируется управляющий сигнал на включение светильников в теплице.

Подогрев почвы

Автоматический подогрев почвы осуществляется точно также как и воздуха, но вместо актуаторов для регулирования температуры используются нагревательные ТЭНы или греющий кабель.

Устройства управления системой автоматизации

Отдельно стоит сказать об устройствах, которые принимают информацию от датчиков, анализируют и выдают управляющие сигналы на актуаторы, нагревательные ТЭНы, клапана подачи воды и т.д. В интернете можно встретить очень много статей посвящённых такой платформе как Arduino на базе которой предлагается создавать автоматизацию небольших теплиц. 

Arduino - аппаратно-программное средство с предварительно прошитым в него загрузчиком, который позволяет загружать свою программу в микроконтроллер без использования отдельных аппаратных программаторов. Микроконтроллер на плате программируется при помощи языка Arduino, основаном на языке Wiring (Си подобный). 

Все результаты работы оборудования в автоматизированной теплице при необходимости можно визуально отследить на компьютере. Веб-интерфейс может давать возможность не только следить за показаниями датчиков температуры, влажности и освещения, но и управлять этими самыми показаниями. Также может быть реализована возможность следить за теплицей через веб-камеру.

Система управления теплицей контролируется центральной платой Arduino, работает следующим образом: полученные данные об окружающей среде датчик температуры воздуха влажности или освещения предается центральному контроллеру (Arduino) которое сравнивает текущие значения с заданными. Если какое-либо из значений не соответствует то исполнительный механизм приводится в действие для восстановления оптимального состояния. Далее Arduino отправляет данные на удаленный сервер для мониторинга через интернет. 

Пример использования Arduino для автоматизации теплицы

Пример использования Arduino для автоматизации теплицы

Пример схемы автоматизации теплицы на Arduino

Пример схемы автоматизации теплицы на Arduino

Посредством специального программируемого блока осуществляется контроль таких параметров как:

  • отопление внутреннего пространства теплицы;

  • подогрев воды;

  • периодичность и продолжительность полива;

  • запуск и отключение принудительной вентиляции;

  • освещение.

Контроль температуры воздуха определяется по двум пороговым пределам: верхний предел и нижний предел. Когда верхний предел превышен открываются форточки, вентилятор приводится в действие для охлаждения парниковый среды для притеснения можно использовать шторки и когда температура падает ниже нижнего предела, вентилятор отключается, включается нагреватель что бы нагреть воздух до заданного уровня.

Контроль влажности определяется порогом, установленным пользователем. когда влажность в теплице падает ниже заданного порога, система автоматического полива включается, а затем выключается, когда оптимальное состояние восстанавливается.

Условие освещения управляется двумя заданными точками: верхний предел и нижний предел. Верхний предел определяет, когда свет активируется в то время как нижний предел определяет, когда она выключена. Эта стратегия в основном используется для увеличения дневного света или компенсировать недостаточное естественное освещение в соответствии с желанием пользователя.

Несмотря на простоту программирования и подключения, а также невысокую стоимость, по моему мнению, реализация подобных проектов на Arduino затруднительна. 

В качестве ведущего управляющего устройства может быть также использован микрокомпьютер Raspberry Pi 2, сочетающий в себе преимущества Arduino и персонального компьютера, т. к. способен запускать отдельную операционную систему и имеет порты ввода/вывода для подключения ведомых устройств и получения сигналов от датчиков. 

Но проще всего купить уже готовое устройство в виде программируемого реле или программируемого логического контроллера. Из отечественных производителей подобной продукции наиболее известны фирмы ОВЕН, Сегнетикс и др. Альтернативой для тех, кто научился программировать Arduino может стать ПЛК Controllino.

ПЛК Controllino

ПЛК Controllino: MINI (слева), MAXI (по середине) и MEGA(справа)

Единственным минусом данного ПЛК являются релейные выходы с током до 6 А. Но если в теплице используется электрооборудование с меньшим потреблением тока, то данный ПЛК подходит как нельзя лучше.

 

На сегодняшний день он выпускается в 3 вариантах: MINI, MEGA, MAXI. Важным плюсом является также возможность подключения к Интернету через интерфейс Ethernet для дистанционного мониторинга и управления. Данный интерфейс доступен в версиях MEGA и MAXI.

Таким образом, создание автоматизированной теплицы на сегодняшний день является простой и относительно недорогой задачей для малых фермерских хозяйств.

Яков Кузнецов

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Факультет Интернет вещей

Обучение Интернет вещей и современные встраиваемые системы

Вы сможете:

  • Изучить C, механизмы отладки и программирования микроконтроллеров;

  • Получить опыт работы с реальными проектами, в команде и самостоятельно;

  • Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды...

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Подробнее здесь: Интернет вещей и современные встраиваемые системы






Поделитесь этой статьей с друзьями:

Другие статьи с сайта Электрик Инфо:

  • Измерение температуры и влажности на Arduino – подборка способов
  • Системы обогрева грунта - как устроены и работают
  • Датчики влажности - как устроены и работают
  • Как сделать обогрев теплицы греющим кабелем
  • Как устроены и работают программируемые комнатные термостаты для теплых пол ...
  • Категория: Избранные статьи » Устройства автоматики

    Автоматика, ПЛК, Автоматика регулирования, Контроллер управления

    Добавление комментария
    Имя:*
    Комментарий:

    Популярные статьи:

    Присоединяйтесь к нам в социальных сетях:

    ВКонтакте | Facebook | Одноклассники | Яндекс Дзен

     


    Электрика дома  Электрообзоры  Энергосбережение
    Секреты электрика Источники света Делимся опытом
    Домашняя автоматика Электрика для начинающих
    Практическая электроника Электротехнические новинки

    Copyright © 2009-2021 Электрик Инфо - Electrik.info, Андрей Повный (о сайте и авторах статей)
    Вся информация на сайте предоставлена в ознакомительных и познавательных целях.
    За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.