Электротехнический интернет-журнал Electrik.info

"Электрик Инфо" - онлайн журнал про электричество. Теория и практика. Обучающие статьи, примеры, технические решения, схемы, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
 


Схемы подключения | Принципиальные схемы | Электроснабжение
Розетки и выключатели | Автоматы защиты | Кабель и провод | Монтаж электропроводки Ремонт электротехники | Молодому электрику

Электрик Инфо » Электрическая энергия в быту и на производстве » Устройства автоматики » Что такое ПИД-регулятор
Количество просмотров: 62959
Комментарии к статье: 2


Что такое ПИД-регулятор


ПИД (от англ. P-proportional, I-integral, D-derivative) — регулятором называется устройство, применяемое в контурах управления, оснащенных звеном обратной связи. Данные регуляторы используют для формирования сигнала управления в автоматических системах, где необходимо достичь высоких требований к качеству и точности переходных процессов.

Управляющий сигнал ПИД-регулятора получается в результате сложения трех составляющих: первая пропорциональна величине сигнала рассогласования, вторая — интегралу сигнала рассогласования, третья — его производной. Если какой-то из этих трех компонентов не включен в процесс сложения, то регулятор будет уже не ПИД, а просто пропорциональным, пропорционально-дифференцирующим или пропорционально-интегрирующим.

ПИД-регулятор

Первый компонент — пропорциональный

Выходной сигнал дает пропорциональная составляющая. Сигнал этот приводит к противодействию текущему отклонению входной величины, подлежащей регулированию, от установленного значения. Чем больше отклонение — тем больше и сигнал. Когда на входе значение регулируемой величины равно заданному, то выходной сигнал становится равным нулю.

Если оставить только эту пропорциональную составляющую, и использовать только ее, то значение величины, подлежащей регулированию, не стабилизируется на правильном значении никогда. Всегда есть статическая ошибка, равная такому значению отклонения регулируемой величины, что выходной сигнал стабилизируется на этом значении.

К примеру, терморегулятор управляет мощностью нагревательного прибора. Выходной сигнал уменьшается по мере приближения требуемой температуры объекта, и сигнал управления стабилизирует мощность на уровне тепловых потерь. В итоге заданного значения температура так и не достигнет, ибо нагревательный прибор в просто должен будет быть выключен, и начнет остывать (мощность равна нулю).

Пример применения ПИД-регулятора

Больше коэффициент усиления между входом и выходом — меньше статическая ошибка, но если коэффициент усиления (по сути — коэффициент пропорциональности) будет слишком большим, то при условии наличия задержек в системе (а они зачастую неизбежны), в ней вскоре начнутся автоколебания, а если увеличить коэффициент еще больше — система попросту утратит устойчивость.

Или пример позиционирования двигателя с редуктором. При малом коэффициенте нужное положение рабочего органа достигается слишком медленно. Увеличить коэффициент — реакция получится более быстрая. Но если увеличивать коэффициент дальше, то двигатель «перелетит» правильную позицию, и система не перейдет быстро к требуемому положению, как хотелось бы ожидать. Если теперь увеличивать коэффициент пропорциональности дальше, то начнутся осцилляции около нужной точки — результат снова не будет достигнут...

Пример позиционирования двигателя с редуктором

Второй компонент - интегрирующий

Интеграл по времени от величины рассогласования — есть основная часть интегрирующей составляющей. Она пропорциональна этому интегралу. Интегрирующий компонент используется как раз для исключения статической ошибки, поскольку регулятор со временем учитывает статическую погрешность.

В отсутствие внешних возмущений, через какое-то время подлежащая регулированию величина будет стабилизирована на правильном значении, когда пропорциональная составляющая окажется равной нулю, и точность выхода будет целиком обеспечена интегрирующей составляющей. Но интегрирующая составляющая тоже может породить осцилляции около точки позиционирования, если коэффициент не подобран правильно.

Третий компонент — дифференцирующий

Темпу изменения отклонения величины, подлежащей регулированию, пропорциональна третья — дифференцирующая составляющая. Она необходима для того, чтобы противодействовать отклонениям (вызванным внешними воздействиями или задержками) от правильного положения, прогнозируемого в будущем.

Что такое ПИД простыми словами на примере дрона:

 

Теория работы ПИД-регулятора

Как вы уже поняли, ПИД-регуляторы применяют для поддержания заданного значения х0 некоторой одной величины, благодаря изменению значения u другой величины. Есть уставка или заданное значение х0, и есть разность или невязка (рассогласование) е = х0-х. Если система линейна и стационарна (практически это вряд ли возможно), то для задания u справедливы нижеследующие формулы:

Теория работы ПИД-регулятора

В этой формуле вы видите коэффициенты пропорциональности для каждого из трех слагаемых.

Практически в ПИД-регуляторах используют для настройки другую формулу, где коэффициент усиления применен сразу ко всем компонентам:

Формула для настройки ПИД-регулятора

Практическая сторона ПИД-регулирования

Практически теоретический анализ ПИД-регулируемых систем редко применяют. Сложность состоит в том, что характеристики объекта управления неизвестны, и система практически всегда нестационарна и нелинейна.

Реально работающие ПИД-регуляторы всегда имеют ограничение рабочего диапазона снизу и сверху, это принципиально объясняет их нелинейность. Настройка поэтому практически всегда и везде производится экспериментальным путем, когда объект управления подключен к системе управления.

Использование величины, формируемой программным алгоритмом управления, обладает рядом специфических нюансов. Если речь, например, о регулировке температуры, то часто требуется все же не одно, а сразу два устройства: первое управляет нагревом, второе — охлаждением. Первое подает разогретый теплоноситель, второе — хладагент. Три варианта практических решений может быть рассмотрено.

Первый — близок к теоретическому описанию, когда выход - аналоговая и непрерывная величина. Второй — выход в форме набора импульсов, например для управления шаговым двигателем. Третий — ШИМ-управление, когда выход с регулятора служит для задания ширины импульсов.

Измеритель-регулятор

Сегодня системы автоматизации практически все строятся на основе ПЛК, и ПИД-регуляторы представляют собой специальные модули, добавляемые к управляющему контроллеру или вообще реализуемые программно путем загрузки библиотек. Для правильной настройки коэффициентов усиления в таких контроллерах, их разработчики предоставляют специальное ПО.

Structured Text

Представляем книгу по Structured Text (ST) МЭК 61131-3. Автор - Сергей Романов

Книга "Изучаем Structured Text МЭК 61131-3": Ссылка на книгу

Популярные публикации:

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Устройства автоматики

Подпишитесь на наш канал в Телеграм "Автоматика и робототехника" (современные технологиии, инновации и будущее автоматизации). Нажмите на ссылку ниже и будьте в центре событий в мире автоматики: Автоматика и робототехника 



Поделитесь этой статьей с друзьями:


Другие статьи с сайта Электрик Инфо:

  • Частотный преобразователь для насоса или вентилятора - на какие функции сто ...
  • Частотная коррекция в петле обратной связи ИИП на примере TL494
  • Автоматическое регулирование и управление
  • Триггер Шмитта - общее представление
  • Использование ОВЕН ПЛК в системах автоматического управления освещением
  • Операционные усилители. Часть 2. Идеальный операционный усилитель
  • Чем отличаются аналоговые и цифровые датчики
  • Схемы на операционных усилителях с обратной связью
  • Микросхема 4046 (К564ГГ1) для устройств с удержанием резонанса - принцип ра ...
  • Как устроен и работает сервопривод
  • Категория: Электрическая энергия в быту и на производстве » Устройства автоматики

    Автоматика, Автоматика регулирования, Промышленная автоматизация, Дроны, Андрей Повный – все статьи

      Комментарии:

    #1 написал: Алексей |

    ПИД-регулятор - это устройство, которое позволяет управлять процессом для достижения желаемого выходного состояния. ПИД-регулятор состоит из трех элементов, которые обеспечивают пропорциональное, интегральное и производное действие. Эти три действия и дали имя ПИД-регулятору.

    Следует учитывать, что в промышленных процессах существуют ограничения, которые снижают способность контроллера достичь желаемого отклика, когда независимо от того, насколько увеличивается пропорциональное действие, наступит время, когда исполнительный механизм будет насыщаться. Например, в процессе регулирования температуры нагревательный элемент сможет выдавать мощность до 2000 Вт. Если контроллер попытается выдать больше мощности для достижения более высокой скорости нагрева, это будет невозможно, и система не будет работать быстрее. Поэтому необходимо учитывать, что скорость отклика реальных систем имеет определенные пределы, которые регулятор не сможет обеспечить.

      Комментарии:

    #2 написал: Сергей |

    ПИД-регулятор используется в системах управления для формирования управляющего сигнала. Он состоит из трех составляющих: пропорциональной составляющей, интегральной составляющей и дифференциальной составляющей. Если какая-то из этих составляющих не используется, то регулятор будет другим типом регулятора. Выходной сигнал пропорциональной составляющей противодействует текущему отклонению входной величины.

    Присоединяйтесь к нам в социальных сетях:

    ВКонтакте | Facebook | Одноклассники | Электрик Инфо на Яндекс Дзен

     

    Популярные разделы сайта:

    Электрика дома  Электрообзоры  Энергосбережение
    Секреты электрика Источники света Делимся опытом
    Домашняя автоматика Электрика для начинающих
    Практическая электроника Электротехнические новинки
    Андрей Повный - все статьи автора



    Copyright © 2009-2024 Электрик Инфо - Electrik.info, Андрей Повный
    Вся информация на сайте предоставлена в ознакомительных и познавательных целях.
    За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.