Электротехнический интернет-журнал Electrik.info

"Электрик Инфо" - онлайн журнал про электричество. Теория и практика. Обучающие статьи, примеры, технические решения, схемы, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
 


Схемы подключения | Принципиальные схемы | Электроснабжение
Розетки и выключатели | Автоматы защиты | Кабель и провод | Монтаж электропроводки Ремонт электротехники | Молодому электрику

Электрик Инфо » Электрические приборы и устройства » Как устроен и работает плазменный сварочный аппарат
Количество просмотров: 33458
Комментарии к статье: 1


Как устроен и работает плазменный сварочный аппарат


Как устроен и работает плазменный сварочный аппаратПлазмой в физике называют четвертое состояние вещества после твердой, жидкой и газообразной форм, когда происходит частичная или полная ионизация среды из нейтральных до этого молекул и атомов с соблюдением условия квазинейтральности: равенства объемной плотности всех заряженных частиц.

В сварочной технике используются следующие свойства низкотемпературной (менее миллиона градусов по шкале Кельвина) плазмы:

  • очень высокая электрическая проводимость;

  • сильное влияние внешних магнитных полей на протекание в ней токов, способствующих образованию струй и слоев;

  • проявление коллективных эффектов, выражающихся преобладанием магнитных и электрических сил над гравитационными.

Принципы создания и работы плазменных горелок

У этого способа сварки источником разогрева металлов до температуры плавления является плазменная дуга из ионизированного газа, которая направляется в нужную сторону. Ее вырабатывает специальное устройство, называемое плазмотроном или плазменной горелкой.

Классификация по типу создания дуги

По принципу работы плазмотрон бывает прямого или косвенного действия.

Классификация плазмотронов по типу создания дуги

В первом случае разность потенциалов внешнего поля генератора, создающего условия для образования дуги, прикладывается прямо к обрабатываемой детали и электроду газовой горелки. За счет этого повышается эффективность охлаждения конструкции.

При втором методе электрическое напряжение прикладывается только между частями горелки для создания струи плазмы. За счет этого требуется усложнять систему охлаждения соплового узла.

У плазматронов прямого действия вырабатывается дуга, приблизительно напоминающая цилиндрическую форму, немного расширяющуюся у поверхности обрабатываемого металла.

Внутри нейтрального электрического сопла происходит сжатие и стабилизация дуги. При этом сочетание тепловой и кинетической энергии плазмы формирует для нее повышенную мощность, позволяющую глубже проплавлять металл.

Горелки косвенного действия создают плазму в форме конической струи, окруженной факелом, направленным к изделию. Струю выдувает поток плазмы, исходящий из горелки.

Формы струи плазмы

Классификация по способам охлаждения горелок

Из-за высокой температуры плазмы применяют различные способы охлаждения деталей плазмотрона:

  • обдув воздухом;

  • теплосъем за счет принудительной циркуляции воды.

Классификация по виду применяемого охлаждения

Воздушное охлаждение менее затратное, а жидкостное — наиболее эффективное, но сложное.

Классификация по способам стабилизации дуги

Газовая горелка должна обеспечивать ровный, стабилизированный по величине и направлению температурный столб со строгой фиксацией его по оси сопла и электрода.

С этой целью разработано три вида конструкций сопла, использующих энергию:

1. газа;

2. воды;

3. магнитного поля.

Классификация плазмотронов по способу стабилизации дуги

При первом способе холодная струя газа, обдувая столб плазмы, охлаждает и одновременно сжимает его. В зависимости от направления струи газового потока создается стабилизация:

1. аксиальная — при параллельном обдуве столба;

2. вихревая, когда поток газа создается в перпендикулярном направлении.

Второй способ более эффективно обжимает дугу и применяется в плазмотронах, используемых для напыления металлов или резки.

Аксиальная стабилизация лучше подходит для сварки и наплавки металлов.

Схема двойной стабилизации сочетает в себе черты аксиальной и вихревой. При ее использовании существует возможность пропускать газ тремя способами:

  • только через основной центральный канал;

  • сквозь оба;

  • исключительно через внешний.

При каждом методе создаются разные схемы обжатия столба плазмы.

Водяная стабилизация использует встречные завихренные потоки жидкости. Образуемый при этом пар помогает создавать плазму с разогревом столба до 50 тысяч градусов по шкале Кельвина.

Существенным недостатком этого метода является интенсивное сгорание катода. Для таких устройств электрод делают из графита, разрабатывая механизмы его автоматического приближения к обрабатываемой детали по мере постоянного расхода длины.

Устройства плазмотронов с водяной стабилизацией отмечаются:

  • сложностью конструкции;

  • низкой надежностью системы подачи электрода;

  • трудоемкостью методов возбуждения дуги.

Магнитная стабилизация работает за счет направленного магнитного поля, расположенного поперек перемещения столба дуги. Ее эффективность самая низкая, а соленоид, встроенный в сопло, значительно усложняет схему плазмотрона.

Однако, магнитную стабилизацию применяют для придания вращательного движения анодному пятну внутри стенок сопла. Это позволяет уменьшать эрозию материала сопла, которая влияет на чистоту струи плазмы.

Все рассмотренные выше конструкции плазматронов относятся к дуговым. Но существует еще один вид подобных устройств создания плазмы за счет энергии высокочастотного тока, проходящего по катушке индуктора. Такие плазматроны называются индукционными (ВЧ) и они не требуют наличия электродов для создания разряда дуги.

Высокочастотный индукционный плазмотрон

Они не обладают особыми преимуществами в воздействии на обрабатываемые металлы по сравнению с дуговыми устройствами и используются для решения отдельных технологических процессов, например, выработки чистых порошковых металлов.

Конструктивные особенности горелок

Работу одного из видов плазменной горелки позволяет объяснить приведенный ниже рисунок.

Плазмотрон прямого действия

Плазменная дуга при сварке создается внутри защитной атмосферной оболочки, образованной подачей в рабочую зону вдуваемого газа. Им чаще всего выбирают аргон.

Плазмообразующим газом (источником ионизации) может работать:

  • аргон;

  • азот;

  • гелий;

  • воздух;

  • водород;

  • смеси перечисленных газов.

Следует учитывать, особенности их эксплуатации:

  • водород взрывоопасен;

  • из воздуха выделяются нитриды и озон;

  • гелий дорогой;

  • азот при больших температурах вредно влияет на экологию.

В качестве материала для электродов чаще всего выбирают вольфрам из-за наиболее подходящих механических свойств и стойкости к высоким температурам.

Газовое сопло закрепляется в горелке и обдувается защитным потоком. По гидравлическим магистралям нагнетается холодная жидкость и отводится нагретая.

Токоведущие провода подводят к электродам электрическую энергию постоянного либо переменного тока.

Чтобы питать плазмообразующую дугу подключают источник тока с напряжением порядка 120 вольт для сварки и около 300 на холостом ходу — для резки.

Устройство плазменного генератора

Для запуска плазматрона может использоваться переменный или постоянный ток. В качестве примера рассмотрим работу генератора от обычной сети электроснабжения 220 вольт.

Балластный резистор ограничивает ток питания. Дроссель регулирует нагрузку. Диодный мост преобразует переменное напряжение для поддержания дежурной дуги.

Устройство плазменного генератора

Воздушный компрессор подает защитный газ в горелку, а гидравлическая система охлаждения обеспечивает циркуляцию жидкости в магистралях плазматрона для поддержания эффективного теплосъема.

Техника выполнения плазменной сварки и резки

Для зажигания и поддержания сварочной дуги используют энергию электрического тока, а для ее бесконтактного возбуждения — осциллятор (источник колебаний).

Применение дежурной дуги между электродом и соплом позволяет значительно облегчать процесс запуска плазмы.

Подобная сварка позволят соединять практически все металлы и сплавы, расположенные в нижней или вертикальной плоскости.

Без предварительной обработки кромок на скос можно сваривать заготовки с толщиной до 15 мм. При этом образуется характерный провар со специфическими формами благодаря выходу плазменной струи за пределы обратной стороны свариваемой детали через сквозные прорези.

Фактически сварка плазмой в большинстве случаев представляет собой двойной непрерывный процесс:

  • прорезания материала заготовок;

  • заварки места разреза.

Технология резки основана на:

  • расплаве слоя металла в месте обработки;

  • выдувания жидкой фракции потоком плазмы.

Толщина металла влияет на технологию резки. Для тонких изделий применяют дугу косвенного метода, а при более толстых лучше работают плазмотроны прямого подключения.

Плазменная резка наиболее экономична для всех металлов, включая углеродистые стали.

Технология плазменной резки металлов

Для выполнения плазменной сварки и резки разработаны автоматизированные линии и ручные установки.

Ручная плазменная сварка металлов

Виды плазменной сварки

На мощность создаваемой дуги влияет сила применяемого тока. По ее величине определяют три вида сварки:

1. микроплазменная;

2. средняя;

3. на больших токах.

Микроплазменная сварка

Она работает на токах, ограниченных величинами 0,1÷25 ампер. Эта технология используется в радиоэлектронике, приборостроении, ювелирном деле, изготовлении сильфонов, мембран, термопар, фольги, тонкостенных труб и емкостей, позволяя прочно соединять детали толщиной 0,2÷5 мм.

Для обработки разных материалов подбираются сочетания плазмообразующих и защитных газов, степень сжатия дуги, приближение к аноду. При обработке особенно тонких материалов используется режим импульсной работы при малоамперном питании дуги с подачей разнополярных импульсов тока.

Во время прохождения импульса одной полярности происходит наплавка или сварка металла, а при паузе за счет смены направления идет остывание и кристаллизация металла, создается сварная точка. Для ее хорошего образования оптимизируется процесс подачи тока и паузы. В сочетании с регулировкой амплитуды и удалением электрода это позволяет достичь высокого качества соединения различных металлов и сплавов.

Для выполнения микроплазменной сварки разработано много технологий, учитывающих разные углы наклона плазмотронов, создания поперечных колебаний для разрушения оксидных слоев, перемещение сопла относительно обрабатываемого шва и другие способы.

Сварка плазмой при средних токах 50÷150 ампер используется в промышленном производстве, машиностроении и ремонтных целях.

Высокие токи от 150 ампер используются для плазменных сварок, осуществляющих в промышленных условиях обработку легированных и низкоуглеродистых сталей, сплавов меди, титана, алюминия. Она позволяет снизить затраты на разделку кромок, повысить производительность процесса, оптимизировать качество швов по сравнению с электродуговыми способами соединений.

Плазменная наплавка металлов и напыление поверхностей

Отдельные детали машин требуют обеспечения высокопрочных или стойких к высоким температурам либо агрессивным средам поверхностей. С этой целью их покрывают защитным слоем дорогостоящего металла способами плазменной обработки. Для этого подготовленная проволока или порошок в мелких гранулах вводится в поток плазмы и распыляется в расплавленном состоянии на обрабатываемую поверхность.

Порошковое плазменное напыление

Достоинства этого метода:

  • способность плазмы расплавлять любые металлы;

  • возможность получать сплавы разных составов и создавать многослойные покрытия;

  • доступность обработки форм любых габаритов;

  • удобство регулировок энергетических характеристик процессов.

Преимущества плазменной сварки

Очаг дуги, создаваемый при плазменной сварке, отличается от обычной электрической:

1. меньшей контактной площадкой на обрабатываемом металле;

2. бо́льшим тепловым воздействием благодаря приближению к цилиндрической форме;

3. повышенным механическим давлением струи на металл (примерно в 6÷10 раз);

4. способностью поддержания горения дуги на низких токах, вплоть до 0,2 ампера.

По этим четырем причинам плазменная сварка считается более перспективной и многоцелевой при обработке металлов. Она обеспечивает лучшее расплавление внутри уменьшенного объема.

Дуга плазмы обладает наиболее высокой концентрацией температуры и позволяет резать и сваривать металлы повышенной толщины даже при определенных увеличениях расстояния от сопла горелки до обрабатываемого изделия.

Кроме того, устройства плазменной сварки отличаются:

  • относительно небольшими габаритами;

  • надежностью в работе;

  • простотой регулирования мощности;

  • легким запуском;

  • быстрым прекращением рабочего режима.

Недостатки

Высокая стоимость оборудования ограничивает широкое внедрение плазменной сварки во все отрасли производства и среди маленьких предприятий.

Популярные публикации:

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрические приборы и устройства

Подписывайтесь на наш канал в Telegram: Домашняя электрика 



Поделитесь этой статьей с друзьями:


Другие статьи с сайта Электрик Инфо:

  • Плазменные лампы - как устроены и работают
  • Почему сварка всегда лучше других способов соединений проводов
  • Точечная сварка в домашней мастерской
  • Что такое сварочный инвертор и как он работает
  • Когда станут реальностью плазменные генераторы электричества
  • Соединение сваркой алюминиевых проводов
  • Износ контактов коммутационных аппаратов в процессе работы
  • Магнитогидродинамический метод непосредственного преобразования тепловой эн ...
  • Соединение проводов сваркой
  • Чудеса электричества: переменный и постоянный ток в индустрии красоты
  • Категория: Электрические приборы и устройства

      Комментарии:

    #1 написал: Анатолий |

    Очень жаль, что такую установку для хозяйства домой не приобретешь. Я даже и подумать не мог, что сейчас существует такой надежный и эффективный способ сварки. Мне статья понравилась и главное я из нее для себя почерпнул очень много интересного и полезного. 

    Присоединяйтесь к нам в социальных сетях:

    ВКонтакте | Facebook | Одноклассники | Электрик Инфо на Яндекс Дзен

     

    Популярные разделы сайта:

    Электрика дома  Электрообзоры  Энергосбережение
    Секреты электрика Источники света Делимся опытом
    Домашняя автоматика Электрика для начинающих
    Практическая электроника Электротехнические новинки
    Андрей Повный - все статьи автора



    Copyright © 2009-2024 Электрик Инфо - Electrik.info, Андрей Повный
    Вся информация на сайте предоставлена в ознакомительных и познавательных целях.
    За применение этой информации администрация сайта ответственности не несет.
    Перепечатка материалов сайта запрещена.